Gravimoti: la discussione continua (di Patrizio Petricca e Giuseppe De Natale)

Patrizio Petricca (Università Sapienza, Roma). Caro Gianluca, grazie per questa tua intervista che alimenta la discussione alla base della ricerca scientifica, importante sia tramite canali ufficiali (le riviste peer-reviewed) che, in qualche modo, su blog come questo. Condivido ciò che dice nel suo commento Giuseppe De Natale, che riprende un concetto di Popper, ovvero che la Scienza progredisce attraverso nuove proposte che spingono la comunità scientifica a chiarire meglio i concetti ed a trovare precisamente gli errori. Vedo con soddisfazione che l’argomento genera interesse e spero che in futuro il modello venga confutato o confermato da nuovi studi.

Il modello dei graviquakes, che tratto come autore o coautore in vari lavori, è spesso criticato sulla base del meccanismo di doppia coppia, che è un sistema di rappresentazione di forze non in contrasto con quanto previsto dal collasso gravitativo. Questo punto viene spesso sollevato e utilizzato come argomento a sfavore con “darebbe osservazioni diverse dal modello di doppia coppia”. Sarebbe interessante capire quali siano le differenze nelle osservazioni (sismologiche) di uno stesso risultato (scivolamento del tetto lungo la faglia) controllato però da due meccanismi differenti (accumulo di energia elastica o gravitazionale).

Non posso non notare, nel tuo post e nei commenti, una certa confusione tra la critica al modello generale e a uno dei suoi osservabili (o meglio al metodo utilizzato per evidenziarlo). Nell’articolo di Segall e Heimisson (2019), in effetti, si critica il metodo utilizzato per il calcolo del “volume unbalance” e si dimostra che per generare i valori di sollevamento/subsidenza descritti in Bignami et al. (2019) è sufficiente utilizzare una sorgente puntiforme (anche se con una discrepanza nei risultati del 20% che non è un valore trascurabile). Mi astengo dal commentare il metodo DinSAR poichè non conosco la materia. Il punto è che il risultato di Segall e Heimisson non confuta affatto il “volume unbalance” ma lo descrive a partire da un’ipotesi differente. Quanto discusso in quel lavoro si concentra su uno degli osservabili che il modello dei graviquakes cerca di giustificare teoricamente. Di conseguenza non vedo come il loro risultato possa perdipiù confutare (come confermi anche tu in un commento successivo) il modello generale. Il rasoio di Occam si applica quindi al volume unbalance, al metodo utilizzato per calcolarlo o al modello generale? Sono cose diverse.

Il mio commento non voleva però entrare nel merito del modello dei “graviquakes” (in quanto gia fatto da Carlo Doglioni nel post di risposta a questo tuo articolo). Piuttosto vorrei riportare, brevemente, alcune considerazioni che a me inducono a ragionare su un modello del ciclo sismico diverso (qualunque esso sia) e dubitare del convenzionale.

La teoria dell’elastic dislocation. Tu dici che, per descrivere il campo di deformazione generato da un forte terremoto questa teoria è comunemente accettata. Nel commento di De Natale leggo “La teoria della dislocazione elastica è estremamente generale, estremamente elegante e, in senso fisico-matematico, estremamente semplice. Le osservazioni fondamentali sono estremamente d’accordo con la teoria”. Quindi mi domando, la teoria della dislocazione elastica è il modello ultimo e abbiamo l’unico obiettivo di migliorarla e raffinarla? Approfondendo la letteratura al riguardo si hanno impressioni diverse. Ad esempio questa teoria è comunemente “utilizzata” (e non accettata) perchè, questo si, è “semplice”. La comunità dei ricercatori che si occupa di hazard sismico ne è consapevole, ed emerge chiaramente sia nei numerosi lavori che la criticano sia in quelli, altrettanto numerosi, che la utilizzano. Le osservazioni fondamentali non sono “estremamente” d’accordo con la teoria; tuttaltro. Questo si può leggere e approfondire in numerosi articoli scientifici (si vedano ad esempio Stein et al., 2012; Wyss, 2015; Geller et al., 2016). Gli osservabili non sono così in accordo con quanto previsto dal modello (rimando ancora alla risposta di Doglioni). Le difese appassionate di tale modello (elastico) non mancano anche se il suo utilizzo ha portato in passato a numerosi errori di previsione.

Ad ogni modo il mio commento a tutta la discussione è che, a prescindere se i gravimoti rappresentino o meno un nuovo paradigma, bisogna ammettere che nella letteratura si percepisce dell’incertezza sull’argomento, che porta a farsi domande e forse nasconde la necessità di una teoria alternativa. Ben venga il dibattito.

Bignami, C., Valerio, E., Carminati, E., Doglioni, C. and Tizzani, P. (2019). Volume unbalance on the 2016 Amatrice – Norcia (central Italy) seismic sequence and insights on normal fault earthquake mechanism. Scientific Reports, 9:4250.

Geller, R.J., Mulargia, F. and Stark., P.B. (2016). Why we need a new paradigm of earthquake occurrence. Subduction dynamics: From mantle flow to mega disasters, geophysical monograph 211, 183-191.

Segall P. and Heimisson, H.R. (2019). On the Integrated Surface Uplift for Dip-Slip Faults. Bulletin of the Seismological Society of America, 109 (6): 2738-2740.

Stein, S., Geller, R.J. and Liu, M. (2012). Why earthquake hazard maps often fail and what to do about it. Tectonophysics, 562, 1-25.

Wyss, M. (2015). Testing the basic assumption for probabilistic seismic‐hazard assessment: 11 failures. Seismological Research Letters, 86(5), 1405-1411.

 

Giuseppe De Natale (INGV, Napoli). Entro di nuovo nella discussione per commentare alcune affermazioni di Patrizio Petricca, sulle quali mi sento in dovere di fare delle precisazioni; che riguardano di fatto non la Sismologia ma il metodo scientifico.

So che sembra strano dover discutere di argomenti basilari che nella ricerca scientifica dovrebbero essere dati per scontati. Sembra però che negli ultimi anni il proliferare delle riviste scientifiche, e la stessa ossessione per le pubblicazioni come valore ‘metrico’ (vedi H-index), e non per il valore intrinseco di ciò che affermano, abbia portato spesso a dimenticare i concetti di base; che quindi vorrei qui ribadire.

Innanzitutto, non era mia intenzione, nel commento al post di Gianluca Valensise, scomodare Popper. Popper è nato nel 1902; le basi del metodo scientifico risalgono a molto prima (Occam è del 1300, Bacone del 1200; Galileo, pietra miliare del metodo scientifico, del 1600). La Scienza va avanti così, da sempre. E dunque voglio spiegare meglio, visto che non sembra essere stato ben compreso, il senso del mio commento.
La teoria della dislocazione elastica è una elaborazione fisico-matematica assolutamente universale, validata da tutte le osservazioni di qualunque tipo su qualsiasi materiale (anche quelli recenti di sintesi, polimeri, ecc.) che, entro certi limiti, abbia un comportamento molto vicino a quello di un solido elastico ‘ideale’. Poi, la teoria della dislocazione elastica viene applicata ‘anche’ per spiegare l’origine dei terremoti; ed anche qui non c’è mai stata alcuna ‘forte discrepanza’ che non possa essere motivata dalla non piena corrispondenza tra i materiali rocciosi dell’interno della Terra e i mezzi elastici ‘ideali’; colpisce semmai, come dicevo, l’incredibile corrispondenza con quanto realmente osservato anche in mezzi estremamente complessi.

Il senso del mio commento, necessariamente dai toni sfumati per il dovere di presupporre che certi concetti di base siano ben noti a tutti coloro che si occupano di ricerca, voleva puntualizzare appunto che non si può confutare una teoria ‘universale’, applicabile in innumerevoli ambiti, sulla base di ipotetiche piccole ‘deviazioni’, la cui significatività è tutta da dimostrare (e finora assolutamente indimostrata), che esisterebbero in un ambito estremamente ristretto (i terremoti di faglia normale). D’altra parte, il mio commento nell’ultima frase aggiungeva un’altra cosa che evidentemente non è stata compresa. Ossia che, a parte il ‘volume unbalance’ che, come si è detto, non è realmente misurabile con la precisione affermata, ma anche se lo fosse sarebbe ‘dimostrabilmente’ in accordo con i modelli di dislocazione elastica, non c’è alcuna osservazione fondamentale che il modello ‘graviquakes’ riesca a spiegare e la teoria della dislocazione elastica no.

D’altra parte, quando si afferma appunto (qualitativamente peraltro) che il modello ‘graviquakes’ produrrebbe dati sismologici equivalenti a quelli previsti dalla teoria della dislocazione elastica (sorvolo sul fatto che secondo me non è vero, nel senso che il modello ‘graviquakes’ non spiegherebbe molte osservazioni fondamentali), si sta esattamente dicendo che non ci sono implicazioni sostanzialmente differenti e tali da giustificare l’abbandono di una teoria universalmente validata ‘anche’ per i terremoti di faglia normale. E quindi, quali sarebbero i motivi per abbandonare un modello ancorato ad una teoria ‘universalmente riconosciuta’ in favore di qualcosa di diverso, valido solo in un ambito molto locale, che produrrebbe gli stessi osservabili?

Stavolta cito veramente Popper, e dico che un modello non ‘falsificabile’ non ha molto senso. E lo posso dire anche molto più semplicemente, come probabilmente lo spiegavano i filosofi del ‘200: affermare che la pioggia non è prodotta dalla condensazione del vapore acqueo che ricade dalle nuvole, ma il risultato del pianto di tanti angioletti invisibili e giammai rilevabili in alcun modo, non ha evidentemente senso. Questo discorso, ovviamente, non va assolutamente confuso con altri: tipo ‘previsione dei terremoti’, ‘ciclo sismico’, ‘determinazione della pericolosità sismica’.

Questi problemi, che nel post di Petricca sembrerebbero l’argomento principale di confutazione della teoria della dislocazione elastica (e difatti quasi tutta la letteratura portata ad esempio verte su tali questioni), sono di tutt’altra natura. Rappresentano infatti il nostro limite nella conoscenza e nella trattazione di fenomeni estremamente complessi come l’accumulo e la dissipazione di sforzi tettonici; oppure, nel caso delle stime di pericolosità, rappresentano scelte ‘convenzionali’ (ossia dettate dall’utilità e dagli scopi) per difenderci dai danni dei terremoti. Ma questi, che sono ‘modelli’ (empirici) nel senso stretto della definizione, non hanno nulla a che fare con la validità o meno della teoria della dislocazione elastica, che deriva invece dallo sviluppo di equazioni che descrivono il comportamento fondamentale dei solidi; né tantomeno possono metterla in discussione.

Che poi anch’io abbia letto su alcuni quotidiani (ed ascoltato personalmente in alcuni seminari, non senza essermi alzato per puntualizzare il mio dissenso scientifico), dopo alcuni forti terremoti recenti, che i massimi danni avverrebbero nella zona di abbassamento prodotta dalle faglie normali per effetti ‘gravitativi’, non voglio neanche commentarlo; da Sismologo (e da persona che si occupa di Scienza) preferisco dimenticarlo.
Spero stavolta di essermi espresso in maniera meno ‘sfumata’, in modo comprensibile a tutti.

Gravimoti: alcuni commenti all‘intervista di Valensise (di Carlo Doglioni)

Riceviamo da Carlo Doglioni questo commento, che pubblichiamo come contributo indipendente, all’intervista a Gianluca Valensise
https://terremotiegrandirischi.com/2019/12/17/gravimoti-un-nuovo-paradigma-intervista-a-gianluca-valensise/
 
Carlo Doglioni, geologo, è professore di geodinamica all’Università Sapienza di Roma dal 1997. Dal 2009 al 2014 è stato presidente della Società Geologica Italiana; dal 2009 è membro dell’Accademia dei Lincei e dal 2011 dell’Accademia dei XL. Dal 27 aprile 2016 è presidente dell’Istituto Nazionale di Geofisica e Vulcanologia.

La teoria del rimbalzo elastico è stata una grande innovazione all’inizio del secolo scorso. Questo modello assumeva l’ipotesi che le faglie sismogenetiche fossero “prevedibili” nel loro comportamento e che tendessero alla rottura in modo simile e con la stessa magnitudo in un ciclo potenzialmente infinito. Questa assunzione, indistinta per gli ambienti tettonici estensionali, compressivi o trascorrenti, si è dimostrata poco attinente alla realtà più complessa del ciclo sismico.
I terremoti estensionali hanno per esempio un certo numero di differenze rispetto a quelli compressivi che non possono essere spiegate se non con meccanismi genetici diversi.

Sono stato revisore dell’articolo di Segall & Heimisson (BSSA, 2019) e quindi parlo con conoscenza di causa. Gli autori travisano il comportamento elastico della crosta superiore con l’energia elastica accumulata nell’intersismico negli ambienti estensionali, che non c’è, quantomeno quella necessaria al rimbalzo elastico.

Uno dei principali osservabili “accantonato” nella teoria del rimbalzo elastico, considerato invece nel modello dei gravimoti, è la distribuzione dello stress con la profondità. Notoriamente, negli ambienti estensionali, lo stress massimo è all’incirca verticale e parallelo al carico litostatico. Quello che nel modello del rimbalzo elastico, e di conseguenza anche nell’articolo di Segall & Heimisson non funziona clamorosamente è l’assumere che la crosta sia soggetta ad un tiro estensionale: ciò è falso perché sotto 1 km circa di profondità, la crosta è in compressione anche negli ambienti estensionali perché il carico litostatico si ripartisce nel volume e va ad annullare ed invertire la componente orizzontale negativa (estensione) dello stress minimo, che diventa positivo e quindi necessariamente compressivo.

Schermata 2019-12-19 alle 11.12.48
Questa condizione, nota anche nei libri di testo, previene ogni possibilità di avere un tiro orizzontale (con stress minimo, cioè il sigma 3, negativo) che possa generare un rimbalzo elastico. Il carico litostatico aumenta di circa 25-27 MPa/km e sotto 1 km anche il sigma minimo diventa positivo, cioè compressivo: si legga per esempio Twiss & Moores, “Structural Geology” pag 190-191:

Schermata 2019-12-19 alle 11.13.15

Note that the plot of minimum values of sigma3 in Figure 10.5A indicates that actual tensile stresses (negative values of the normal stress) cannot exist below a depth of about 1 km. In fact, tensile stresses have not been measured within the Earth at all.

Figure 10.5A Il sigma minimo (3) sotto 1 km è sempre positivo (compressivo), anche negli ambienti estensionali.

Schermata 2019-12-19 alle 11.13.28

Fig. 9.20 Orientation of the most critically stressed Griffith crack under applied confined compression. The crack is closed, and the orientation of the most criticallynstressed crack falls in the range 45°<b°<90°. A local tensile stress concentration develops near, but not at, the crack tips and is maximum at an angle d°>0°. The local tensile stress maximum sigma1 is oriented such that the crack grows progressively toward parallelism with d1. Crack growth must be accommodated by frictional sliding on the closed part of the crack surface. 

Nel modello dei gravimoti, la crosta superiore ha una reologia sostanzialmente elastica, ma questo non è il punto: il modello di Okada, per esempio, non è messo in discussione dai gravimoti, perché si riferisce alla deformazione modellabile una volta assunto un piano di una certa dimensione e con un determinato slip in un mezzo elastico. Tutto ciò rimane valido e verificato. Il punto nodale è la forza che ha generato il movimento: l’energia sprigionata dai terremoti è accumulata nei volumi e le faglie rilasciano la componente elastica che viene dissipata durante lo slip.
Un’altra mistificazione dei gravimoti è che non generino la doppia coppia: questa è garantita dallo scivolamento lungo il piano di faglia normale e quindi lo shear relativo è rappresentabile come una doppia coppia. Non è dunque un argomento che possa mettere in discussione il modello dei gravimoti. La doppia coppia non ha nulla a che vedere con i volumi ma è un sistema di rappresentazione delle forze, che non è in contrasto con lo scivolamento del tetto della faglia dovuto alla gravità e non a un tiro orizzontale.

Le differenze tra gli ambienti tettonici compressivi ed estensionali sono numerose:

  • Il b-value della Gutenberg-Richter a scala globale è 1.1 per le faglie normali, mentre è 0.9 per i sovrascorrimenti (Schorlemmer et al., 2005): infatti i terremoti estensionali hanno magnitudo anche di due gradi inferiori.
  • La magnitudo massima, di conseguenza è minore per i terremoti estensionali (raramente supera i 7.5) rispetto ai terremoti compressivi che sappiamo arrivare almeno a M 9.5.
  • Nella crosta, i volumi coinvolti dalla tettonica estensionale e di conseguenza la lunghezza delle faglie per i terremoti estensionali hanno una lunghezza che è circa 3 volte lo spessore sismogenetico per gli ambienti estensionali, mentre può superare le 25 volte in quelli compressivi.
  • Gli aftershock durano molto di più per le faglie normali e quindi la legge di Omori ha un esponente diverso per la durata delle sequenze estensionali. Questo è coerente col fatto che i volumi si muovono in favore di gravità negli ambienti distensivi e continuano a muoversi finché non raggiungono il proprio equilibrio gravitazionale, esattamente il contrario degli ambienti compressivi in cui i volumi devono muoversi contro la gravità.
  • Un’altra asimmetria tra terremoti estensionali e compressivi, a parità di magnitudo, è lo stress drop che è maggiore per i terremoti compressivi rispetto a quelli estensionali (si veda Cocco & Rovelli, 1989, JGR).
  • Gli eventi compressivi si enucleano preferibilmente in aree a basso sigma3 (carico litostatico), mentre gli eventi estensionali aumentano di magnitudo con la crescita del sigma1 (carico litostatico), oltre ad avere una migrazione della rottura spesso opposta; si veda Carminati et al. (2004).
  • Il comportamento dei fluidi nel cosismico è opposto tra i due sistemi tettonici (Doglioni et al., 2014); i fluidi sono contenuti nelle fratture e la loro espulsione necessita la chiusura di queste discontinuità formatesi precedentemente nell’intersismico. A questo proposito l’aumento del rapporto Vp/Vs conforta questa interpretazione (Lucente et al. 2010). Pre-, ma soprattutto rialzi cosismici delle falde, aumento della portata delle sorgenti, dei contenuti salini e delle temperature sono stati ampiamente documentati e questi rilasci di fluidi necessitano il restringimento della porosità di frattura preesistente (Barberio et al., 2017; Petitta et al., 2018, ecc.).

Negli articoli sui gravimoti (https://www.nature.com/articles/srep12110), al di là della terminologia e classificazione per identificare fenomeni diversi della natura, così come avviene per la tassonomia delle piante, l’energia rilasciata dal collasso gravitazionale è enormemente superiore a quella liberata dalle onde sismiche: questo ha un doppio significato, cioè 1) l’energia gravitazionale è di gran lunga maggiore rispetto a quella rilasciata dalle onde sismiche ed è quindi più che sufficiente per mobilizzare i volumi a tetto delle faglie normali e generare terremoti estensionali e 2) l’energia in eccesso spiega la deformazione tramite piegamento e fratturazione del volume a tetto (e in parte anche a letto) dei piani di faglia, e il calore di frizione.

Veniamo ai volumi dilatati nell’intersismico negli ambienti estensionali che sono previsti da tutte le modellazioni numeriche al di sopra della transizione fragile-duttile (per esempio Doglioni et al., PEPI 2011). Il rimbalzo elastico necessita di un rimbalzo cosismico prevalente orizzontale, mentre in realtà il movimento dominante è verticale. In un ambiente estensionale il volume comprime verso il basso e può ‘richiudere’ almeno parzialmente il cuneo pre-dilatato durante l’intersismico.

Le rocce fratturate hanno un coefficiente di Poisson minore rispetto a quelle non fratturate. Inoltre il coefficiente di Poisson dipende dalla temperatura e dalla pressione che aumentano con la profondità. Proprio per le proprietà meccaniche, le rocce sovracompresse possono accumulare molta più energia elastica di quanto ne possano accumulare in trazione. Le rocce si fratturano in estensione con un’energia almeno 10 volte inferiore a quella necessaria in contrazione. Anche questo implica una profonda differenza di comportamento meccanico tra le due condizioni tettoniche e di resistenza alla deformazione. Le rocce, una volta fratturate perdono gran parte della loro elasticità. Il paradosso che non esiste trazione negli ambienti estensionali perché tutti e tre i tensori di sforzo sono compressivi è superato dallo stress deviatorico, che agisce in maniera differenziale tra il livello fragile e quello duttile, avendo strain-rate diversi per la loro reologia opposta. Quindi il volume extra che subisce la subsidenza cosismica è naturalmente maggiore negli ambienti estensionali perché va a riprendersi il volume dilatatosi nell’intersismico, ma ciò vale all’opposto anche per gli ambienti compressivi che nel cosismico dilatano invece il volume sovracompresso nell’intersismico a tetto della rampa del sovrascorrimento e che sfogano l’energia, muovendo un volume maggiore verso l’alto (in atmosfera o in mare), senza confinamento, piuttosto che nel sottosuolo.

Segall & Heimisson travisano il contenuto dell’articolo di Bignami et al. 2019 ignorando le basi della geodinamica. Il loro modello assume, come già in Okada, un semispazio elastico infinito isotropico, senza considerare la transizione fragile duttile alla base, condizioni abbastanza irrealistiche. Il modello di Segall & Heimisson non spiega inoltre dove vada a finire il volume mancante in sollevamento. Il loro articolo dice che il volume mancante è un artificio della finitezza del dominio di integrazione, senza escludere che i volumi siano differenti e che per dirimere la questione sia necessario trattare in maniera più approfondita gli errori di misura e di metodo. Inoltre confermano la geometria superficiale in funzione della dislocazione, come già dimostrato da Okada.

Bignami et al. (2019), ma anche Valerio et al. (2018), dimostrano invece che con una tecnica oramai consolidata e di grande risoluzione in termini di minimizzazione dell’errore, c’è uno sbilanciamento di volumi oltre 7 volte maggiore per il volume abbassatosi, che è plausibile solo se vi è un volume pre-dilatato in profondità in grado di assorbire questa grande differenza di massa non riconciliabile con ritiri elastici istantanei. Bignami et al. dimostrano che la deformazione gravitazionale di un mezzo elastico non corrisponde necessariamente a una sorgente energetica di energia elastica.

Segall & Heimisson utilizzano una sorgente puntiforme certamente non in grado di raggiungere la raffinatezza che viene ottenuta oramai dai dati SAR. E’ utile ricordare che l’utilizzo del rimbalzo elastico, che loro invocano, e di ciò che ne consegue (terremoto caratteristico e relativi tempi di ritorno) hanno portato in passato a numerosi errori di valutazione.

Che i graviquakes siano ancora poco accettati è certamente vero, ma ciò non significa che siano sbagliati e rimane il fatto che almeno una decina di riviste internazionali e loro revisori ne hanno ‘promosso’ le evidenze e la modellazione. Qualcuno inoltre inizia a considerare la sismicità estensionale come legata principalmente alla gravità: si veda per esempio Thomson & Parson (2017, PNAS).

In questo breve commento ho omesso per brevità gli ambienti trascorrenti che sono controllati dall’elasticità del mezzo e del rapporto tra la frizione statica del volume crostale con la frizione statica sui piani di faglia, piani che possono essere molto numerosi (si veda la recente sequenza di Ridgecrest 2019, dove sono state mappate oltre 200 faglie attivatesi durante i due mainshock). Solo quando la tettonica trascorrente diventa transtensiva, la componente elastica deve sommarsi alla componente gravitazionale, diminuendo mano a mano che da transtensione si passa a estensione pura.

Vale la pena aggiungere alcuni chiarimenti sulla metodologia utilizzata, a riprova della inesatta analisi dei dati riportati nel citato Bignami et al. 2019, sia da parte di Segall & Heimisson che dal commento di Valensise, e del fatto che il metodo è del tutto corretto. Se si osserva la mappa dei punti che ricadono nell’intervallo -3cm/+3cm (figura in basso) si evince che tale intervallo di deformazioni è praticamente distribuito su tutta la mappa, ad esclusione delle are in subsidenza e sollevamento causate dal terremoto del 2016:

Schermata 2019-12-19 alle 11.13.43

L’analisi statistica di questi dati ci dice che questi punti (sono 663533) con deformazione compresa tra -3 e +3 cm hanno valor medio pari a 0.4437 cm, il che significa che l’immagine, globalmente, ha un bias verso l’alto di circa 4.4 mm che, in quanto tale, non incide sulla differenza tra volumi in sollevamento e volumi in subsidenza.

Schermata 2019-12-19 alle 11.13.51

Se sommiamo le deformazioni dei punti (algebricamente e con bias incluso) si ottiene uno spostamento totale di superficie (ERRATO perché c’è un bias) pari a: 0.00258 km3 (ancora al di sotto del 20% di sottostima). Ma questo conto è errato, proprio per il bias sopracitato, altrimenti dovremmo pensare che si è sollevata mezza Italia tutta insieme. Rimuovendo in modo del tutto corretto il bias, che è indifferente rispetto al calcolo volume up/down relativo, si ottiene un numero ben diverso: -1.02222E-06 km3.
Questo conferma che le misure SAR sono assolutamente affidabili e accurate, molto più di un estremante semplice modello puntiforme proposto da Segall & Heimisson.

L’articolo di Valensise contiene anche altre inesattezze relativamente alla presunta deformazione verso l’Adriatico, dedotte da fonti che presumiamo siano diverse dall’articolo di Bignami et al. 2019. I dati di quest’ultimo mostrano che la deformazione si assesta intorno allo zero man mano che ci si allontana dall’epicentro verso est:

Schermata 2019-12-19 alle 11.14.00

Zoomando nella parte più a est si nota che la deformazione è entro la fascia -3/+ 3 cm di tolleranza, con tendenza anche in abbassamento:

Schermata 2019-12-19 alle 11.14.10
D’altra parte la citata figura 5 tratta da Bignami et al., è ben lontana dalla zona costiera, e non dà informazioni rispetto a cosa succede allontanandosi dell’area epicentrale.

Si fa notare che il SAR non è “cieco” in quel range -3/+3 cm, che è semplicemente la fascia di incertezza per questa specifica mappa fatta con questi specifici dati, un rumore sulla misura che non ci consente di discriminare tra deformazione certamente positiva e certamente negativa, motivo per cui sono state utilizzate tali soglie. Infine, a riprova della scarsa attenzione prestata nella lettura, i dati usati da Bignami et al. 2019, non sono dei satelliti Sentinel dell’Agenzia Spaziale Europea (ESA), bensì del satellite ALOS2, dell’Agenzia Spaziale Giapponese.

Per concludere chiediamoci: negli ambienti estensionali la forza accumulata è dunque l’energia elastica di trazione che non esiste, o è invece la componente gravitazionale che è certa? Questa seconda naturale interpretazione non inficia lo slip in un mezzo elastico. Anche una molla che cade rilascia energia gravitazionale.

Il rasoio di Occam è un percorso mentale utilissimo, ma non può essere un alibi per omettere i dati di fatto. Anzi, Il rasoio di Occam è a favore della energia gravitazionale che sicuramente esiste, in quanto non richiede l’esistenza della trazione elastica che sarebbe una forza aggiuntiva per gli ambienti estensionali.

Carlo Doglioni

Barberio, M.D., Barbieri, M., Billi, A., Doglioni, C., Petitta, M., 2017. Hydrogeochemical changes before and during the 2016 Amatrice-Norcia seismic sequence (central Italy). Scientific Reports, 7, 11735, doi:10.1038/s41598-017-11990-8, https://www.nature.com/articles/s41598-017-11990-8

Barberio M.D., Gori F., Barbieri M., Billi A., Devoti R., Doglioni C., Petitta M., Riguzzi F., Rusi S. 2018. Diurnal and semidiurnal cyclicity of Radon (222Rn) in groundwater, Giardino Spring, central Apennines, Italy. Water, 10, 1276; doi:10.3390/w10091276. https://www.mdpi.com/2073-4441/10/9/1276

Bignami C., Valerio E., Carminati E., Doglioni C., Tizzani P. 2019. Volume unbalance on the 2016 Amatrice – Norcia (central Italy) seismic sequence and insights on normal fault earthquake mechanism. Scientific Reports, 9:4250 | https://doi.org/10.1038/s41598-019-40958-z

Carminati E., Bignami C., Doglioni C., Smeraglia L., 2020. Lithological control on multiple surface ruptures during the 2016-2017 Amatrice-Norcia seismic sequence. Journal of Geodynamics, in press. doi.org/10.1016/j.jog.2019.101676

Carminati E., Doglioni C. & Barba S. (2004): Reverse migration of seismicity on thrusts and normal faults. Earth Science Reviews, 65, 195–222.

Cocco M. & Rovelli A., 1989. Evidence for the Variation of Stress Drop Between Normal and Thrust Faulting Earthquake in Italy. J. Geophys. Res. 94, B7, 9399-9416.

Doglioni C., Barba S., Carminati E. Riguzzi F., 2015. Fault on-off versus strain rate and earthquakes energy. Geoscience Frontiers 6, 265-276, doi: http://dx.doi.org/10.1016/j.gsf.2013.12.007

Doglioni C., Barba S., Carminati E. Riguzzi F., 2014. Fault on-off versus coseismic fluids reaction. Geoscience Frontiers, v. 5, issue 6, pp. 767–780, doi.org/10.1016/j.gsf.2013.08.004

Doglioni C., Carminati E., Petricca P., Riguzzi F. 2015 Normal fault earthquakes or graviquakes. Scientific Reports, 5, 12110 doi:10.1038/srep12110. https://www.nature.com/articles/srep12110

Doglioni, C., Barba, S., Carminati, E. & Riguzzi, F. 2011. Role of the brittle-ductile transition on fault activation. Phys. Earth Planet. Int., 184, 160–171, https://www.sciencedirect.com/science/article/pii/S0031920110002384

Liberatore, D., Doglioni, C., Al Shawa, O., Atzori, S., Sorrentino, L. 2018. Effects of coseismic ground vertical motion on masonry constructions damage during the 2016 Amatrice-Norcia (Central Italy) earthquakes. Soil Dynamics and Earthquake Engineering, 120 (2019) 423–435, https://doi.org/10.1016/j.soildyn.2019.02.015

Lucente, F.P., De Gori, P., Margheriti, L., Piccinini, D., Di Bona, M., Chiarabba, C., Piana Agostinetti, N., 2010. Temporal variation of seismic velocity and anisotropy before the 2009 Mw 6.3 L’Aquila earthquake, Italy. Geology 38 (11), 1015e1018. http://dx.doi.org/10.1130/G31463.1.

Moro, M., Saroli, M., Stramondo, S., Bignami, C., Albano, M., Falcucci, E., Gori, S., Doglioni, C., Polcari, M., Tallini, M., Macerola, L., Novali, F., Costantini, M., Malvarosa, F. and Wegmüller, U., 2017. New insights into earthquake precursors from InSAR. Scientific Reports, 7, 12035, doi:10.1038/s41598-017-12058-3, https://www.nature.com/articles/s41598-017-12058-3

Petitta M., Mastrorillo L., Preziosi E., Banzato F., Barberio M.D., Billi A., Cambi C., De Luca G., Di Carlo P., Di Curzio D., Di Salvo C., Nanni T., Palpacelli S., Rusi S., Saroli M., Tallini M., Tazioli A., Valigi D., Vivalda P., Doglioni C., 2018. Water table and discharge changes associated with the 2016-2017 seismic sequence in central Italy: hydrogeological data and conceptual model for fractured carbonate aquifers. Hydrogeology Journal, https://doi.org/10.1007/s10040-017-1717-7

Petricca P., Barba S., Carminati E., Doglioni C., Riguzzi F. 2015. Graviquakes in Italy. Tectonophysics, 656, 202–214, doi:10.1016/j.tecto.2015.07.001

Petricca, P., Carminati, E., Doglioni, C. and Riguzzi, F., 2018. Brittle-ductile transition depth versus convergence rate: impact on seismicity. Physics of the Earth and Planetary Interior, doi.org/10.1016/j.pepi.2018.09.002

Petricca P., Carminati E. and Doglioni C., 2019. The Decollement Depth of Active Thrust Faults in Italy: Implications on Potential Earthquake Magnitude. Tectonics, 38. https://doi.org/10.1029/ 2019TC005641

Plastino W., Panza G.F., Doglioni C., Frezzotti M.L., Peccerillo A., De Felice P., Bella F., Povinec P.P., Nisi S., Ioannucci L., Aprili P., Balata M., Cozzella M.L., Laubenstein M., 2011. Uranium groundwater anomalies and active normal faulting. J Radioanal Nucl Chem, 288, 101–107.

Riguzzi, F. Crespi, M., Devoti, R., Doglioni, C. Pietrantonio, G. and Pisani, A.R., 2012. Geodetic strain rate and earthquake size: New clues for seismic hazard studies. Physics of the Earth and Planetary Interiors 206-207, 67–75, https://www.sciencedirect.com/science/article/pii/S0031920112001264

Riguzzi F., Crespi M., Devoti R., Doglioni C., Pietrantonio G., Pisani A.R., 2013. Strain rate relaxation of normal and thrust faults in Italy. Geophysical Journal International. doi: 10.1093/gji/ggt304

Schorlemmer, D., Wiemer, S. & Wyss, M. 2005. Variations in earthquake-size distribution across different stress regimes. Nature 437, 22.

Segall P. & Heimisson E.R., 2019. On the Integrated Surface Uplift for Dip‐Slip Faults. Bulletin of the Seismological Society of America (2019) 109 (6): 2738-2740.
https://doi.org/10.1785/0120190220

Smeraglia L., Bernasconi S.M., Berra F., Billi A., Boschi C., Caracausi A., Carminati E., Castorina F., Doglioni C., Italiano F., Rizzo A.L., Uysal T., Zhao X-J. 2018. Crustal-scale fluid circulation and co-seismic shallow comb-veining along the longest normal fault of the central Apennines, Italy. Earth Planet. Sci. Lett., 498, 152-168, https://doi.org/10.1016/j.epsl.2018.06.013.

Thompson, G. A. & Parsons, T. 2017. From coseismic offsets to fault-block mountains. PNAS 114, 9820–9825, https://doi.org/10.1073/pnas.1711203114 (2017).

Valerio, E. Tizzani, P., Carminati, E., Doglioni C., 2017. Longer aftershocks duration in extensional tectonic settings. Scientific Reports, 7, 16403 doi:10.1038/s41598-017-14550-2, https://www.nature.com/articles/s41598-017-14550-2

Valerio, E., Tizzani, P., Carminati, E., Doglioni, C., Pepe, S., Petricca, P., De Luca, C., Bignami, C., Solaro, G., Castaldo, R., De Novellis, V. and Lanari, R. 2018. Ground Deformation and Source Geometry of the 30 October 2016 Mw 6.5 Norcia Earthquake (Central Italy) Investigated Through Seismological Data, DInSAR Measurements, and Numerical Modelling. Remote Sensing, 10, 1901, doi:10.3390/rs10121901, https://www.mdpi.com/2072-4292/10/12/1901

Come (e quando) nacque l’INGV… (di Massimiliano Stucchi)

Premessa. A dispetto del fatto che in questi giorni si voglia celebrare il ventesimo anniversario della nascita dell’INGV, l’INGV nacque invece il 10 gennaio 2001. Nel 1999 uscì il Decreto Legislativo 381/1999, che stabilì il percorso e le modalità di costituzione dell’INGV. Fino al 10 gennaio 2001 l’INGV non esisteva; esistevano al suo posto gli istituti che vi sarebbero confluiti, con i loro presidenti, direttori e organi di governo. Come ha commentato un ex-collega, celebrare la nascita dell’INGV nell’anniversario del suo decreto istitutivo, che aveva fissato anche l’itinerario per la nascita vera e propria, è un po’ come “anticipare la celebrazione del compleanno al giorno del concepimento” (cit.). Ma comunque.
Pensavo quindi di avere un po’ di tempo per preparare un ricordo circostanziato, magari assieme a Tullio Pepe e altri; questo anticipo mi costringe a essere un po’ approssimativo, e mi scuso con chi ha vissuto le esperienze che descrivo se non troverà la narrazione perfettamente corrispondente a come si svolsero i fatti. Comunque mi è piaciuto scriverlo: commenti benvenuti e…rimedierò nel 2021.

Correva l’anno 1999 e, come ci ha ricordato un altro ex-collega, a Erice (Trapani), alto luogo della ricerca scientifica, si tenne in luglio una sessione un po’ particolare della “School of Geophysics”, diretta da Enzo Boschi. Si riunirono infatti, in prevalenza, ricercatori italiani afferenti agli istituti di ricerca del settore geofisico, sismologico e vulcanologico (ING, CNR, Osservatorio Vesuviano, Osservatorio Geofisico Sperimentale di Trieste), oltre a docenti universitari di varie discipline afferenti alla geofisica. Era presente anche qualche docente di ambito geologico. Continua a leggere

How (and when) INGV was born (by Massimiliano Stucchi

translated from https://terremotiegrandirischi.com/2019/09/26/come-e-quando-nacque-lingv-di-massimiliano-stucchi/ by googletranslate, revised

Premise. In spite of the fact that these days the twentieth anniversary of the birth of INGV is going to be celebrated, INGV was actually born on January 10th 2001. In 1999, Legislative Decree 381/1999 was published, which established the path and methods of establishing the INGV. Until January 10, 2001, INGV did not exist; in its place there existed the institutes that would have merged there later, with their presidents, directors and governing boards.
As one former colleague commented, celebrating the birth of INGV on the anniversary of his institutional decree, is a bit like “anticipating the birthday celebration to the day of conception ”(cit.). Anyhow.
I therefore thought I had some time to prepare a detailed account, perhaps with Tullio Pepe and others; this advance forces me to be a bit approximate, and I apologize to those who have lived through the experiences I describe if they will not find my narrative perfectly corresponding to how the events took place. However I liked writing it: comments are welcome and … I’ll fix it in 2021.
Continua a leggere

“Non è vero ciò che è vero, ma è vero ciò che si decide sia vero” (Claudio Moroni, cit.). Di Massimiliano Stucchi

Parte 1: passaggio a L’Aquila, per un altro processo.
Il giorno 9 settembre 2019 sono stato convocato, in qualità di testimone, da un avvocato difensore di alcuni cittadini che hanno avviato, credo nel lontano 2010, una causa civile contro la Presidenza del Consiglio dei Ministri (PCM) per risarcimenti – pare multimilionari – ai parenti di alcune  vittime del terremoto del 6 aprile 2009, di nuovo in relazione alla riunione di esperti del 31 marzo 2009. Il colpevole sarebbe la PCM, in quanto le attività degli esperti vennero svolte a favore del Dipartimento della Protezione Civile, che dipende dalla PCM. L’accusa, sempre la solita: avere rassicurato le vittime, inducendole a non uscire di casa prima del terremoto distruttivo. Continua a leggere

La colpa è dei modelli di pericolosità sismica? (di Massimiliano Stucchi)

Premessa. In questi giorni si discutono problemi ben più gravi e urgenti. Tuttavia l’apparizione di un articolo, su l’Espresso, che approfitta della ricorrenza del terremoto di Amatrice del 2016 per gettare discredito sul modello di pericolosità sismica corrente e sulle norme dello Stato, utilizzando fake news e argomenti inconsistenti mi ha mandato in bestia.

Ce lo si poteva aspettare. Cosa meglio di una ricorrenza di un terremoto (Amatrice, 2016) e delle sue vittime per tornare a accusare terremoti e sismologia? Dopo L’Aquila c’era stato addirittura un processo (anzi, più di uno; uno – civile – ancora in corso, al quale sono stato convocato per testimoniare in settembre, senza spiegazione alcuna, dalla parte che accusa lo Stato e chiede risarcimenti). Continua a leggere

Do seismic hazard models kill? (by Massimiliano Stucchi)

Introduction. The appearance of an article, on the weekly magazine L’Espresso (http://espresso.repubblica.it/plus/articoli/2019/08/26/news/terremoto-calcoli-sbagliati-1.338128?ref=HEF_RULLO&preview=true), which took advantage of the 2016 Amatrice earthquake anniversary to discredit the Italian seismic hazard model and the national building code, based on it, using fake news and inconsistent arguments made me angry.
What follows is a comment written for the benefit of the international readers.
The original version in Italian which can be found here (https://terremotiegrandirischi.com/2019/08/27/la-colpa-e-dei-modelli-di-pericolosita-sismica-di-massimiliano-stucchi/), which can easily be translated by means of the improved https://translate.google.com/.

Continua a leggere

La vulnerabilità dimenticata (colloquio con Gianluca Valensise)

Gianluca Valensise, del Dipartimento Terremoti, INGV, Roma, è sismologo di formazione geologica, dirigente di ricerca dell’INGV, è autore di numerosi studi sulle faglie attive in Italia e in altri paesi. In particolare è il “fondatore” della banca dati delle sorgenti sismogenetiche italiane (DISS, Database of Individual Seismogenic Sources: http://diss.rm.ingv.it/diss/).  Ha dedicato oltre 30 anni della sua carriera a esplorare i rapporti tra tettonica attiva e sismicità storica, con l’obiettivo di fondere le osservazioni geologiche con l’evidenza disponibile sui grandi terremoti del passato. Di recente, con altri colleghi ha pubblicato un lavoro che propone una sorta di graduatoria di vulnerabilità dei comuni appenninici. Gli abbiamo chiesto di illustrarcelo.

Luca, tu sei un geologo del terremoto. Ti occupi di faglie attive, di sorgenti sismogenetiche, di terremoti del passato, di pericolosità sismica. Di recente ti sei avventurato, con altri colleghi, nel tema della vulnerabilità sismica del patrimonio edilizio italiano[1],[2]. Come mai questa scelta? Continua a leggere

The forgotten vulnerability (interview with Gianluca Valensise)


Gianluca Valensise, of the Earthquake Department of INGV, Rome, is a seismologist with a geological background, an INGV research manager, and the author of numerous studies on active faults in Italy and other countries. In particular he is the “founder” of Italy’s Database of Individual Seismogenic Sources (DISS, http://diss.rm.ingv.it/diss/). He has spent over 30 years of his career exploring the relationships between active tectonics and historical seismicity, with the goal of merging geological observations with the available evidence on the largest earthquakes of the past.
Recently, with other colleagues, he published a work that proposes a sort of vulnerability ranking of Apennines municipalities. We discuss it below.

Luca, you are an earthquake geologist. You deal with active faults, seismogenic sources, past earthquakes, seismic hazard. Recently, with other colleagues, you have ventured into the theme of seismic vulnerability of the Italian building heritage. How come this choice? Continua a leggere

La scala macrosismica EM-98 è stata pubblicata in italiano: intervista a Andrea Tertulliani, Raffaele Azzaro e Giacomo Buffarini

La traduzione italiana della scala macrosismica europea (EMS-98), compilata da gruppo di lavoro della ESC (European Seismological Commission) nel decennio 1988-1998, esce a notevole distanza (21 anni) dalla pubblicazione della versione inglese, dopo che quest’ultima è stata utilizzata sul campo e sperimentata in occasioni di numerosi terremoti italiani, dalla sequenza di Colfiorito del 1997 (nell’occasione venne usata la versione 1992 della scala stessa) fino agli eventi del 2016-2017. Vale la pena ricordare le maggiori innovazioni introdotte dalla versione 1992, consolidate nella versione 1998: i) la definizione operativa di intensità macrosismica; ii) l’introduzione della nozione di vulnerabilità sismica come superamento delle tradizionali tipologie costruttive; iii) la compilazione di una guida all’utilizzo della scala stessa. Ne parliamo oggi con i curatori della versione italiana. Continua a leggere