Qualche considerazione a margine del terremoto in Turchia (‘the builder was at fault’, cit.) di Gian Michele Calvi

Pubblichiamo volentieri questa riflessione di Gian Michele Calvi sui terremoti del 6 febbraio, che contiene anche una poesia di C. Richter, ricordando che si è trattato di due terremoti, poco distanti nello spazio e nel tempo come indica la figura. E questo fatto ha contribuito, in particolare per le zone comprese fra i due epicentri, ad aumentare la distruzione e le vittime.

Gian Michele Calvi, professore allo IUSS di Pavia e Adjunct Professor alla North Carolina State University. Calvi è stato il fondatore della Fondazione Eucentre e della ROSE School a Pavia. Ha coordinato, fra le altre cose, il Gruppo di Lavoro che ha redatto il testo dell’Ordinanza PCM 3274 del 2003, che ha innovato il sistema della normativa sismica in Italia. È stato presidente e componente della Commissione Grandi Rischi, sezione rischio sismico.

Schermata 2023-02-15 alle 15.30.32

Charles Richter (si veda più sotto una sua poesia) avrebbe voluto diventare un astronomo.
Ma era il tempo della grande depressione e nemmeno con un dottorato a Caltech era facile rifiutare una posizione all’appena costituito Seismo Lab, diretto allora da Harry Wood (quello del sismometro Wood-Anderson).
In pochi anni Richter[1] osserva che “sarebbe desiderabile avere una scala per misurare le scosse in termini di energia rilasciata, indipendentemente dagli effetti che possono essere indotti in un particolare punto di osservazione”, propone una scala e decide di chiamarla magnitudo, il termine usato per classificare la luminosità delle stelle.
Richter certo non immaginava quante volte la parola magnitudo sarebbe stata usata male.

“Professore di che magnitudo è la scossa che avete applicato alla tavola?” È la domanda più ricorrente quando un giornalista assiste alla simulazione della risposta di una struttura costruita su tavola vibrante. Ma alla tavola si applica un moto, non un’energia; un moto che può essere originato da rilasci di energia (e quindi magnitudo) molto diversi, se originati a distanze diverse, o amplificati localmente da situazioni orografiche o stratigrafiche diverse. Il moto che sente un edificio può essere caratterizzato da diversi parametri, ad esempio dalla massima accelerazione, dalla domanda di spostamento ad un certo periodo di vibrazione, dal picco di velocità, dalla durata del moto. Non dall’energia rilasciata alla fonte.
Richter[2] era perfettamente cosciente del carattere relativo della scala che aveva proposto. Le conoscenze sull’energia rilasciata erano scarse: “visto che la scala è logaritmica, qualsiasi futuro adattamento ad una scala assoluta potrà essere ottenuto semplicemente correggendo i valori con l’aggiunta di una costante”.

Ci vollero quarant’anni per consentire a Kanamori[3] e altri di proporre una scala assoluta, esprimendo, con la bellezza della semplicità, che l’energia rilasciata è proporzionale alla superficie di rottura della faglia, al modulo di elasticità della crosta terrestre ed allo spostamento relativo. Poiché il modulo di elasticità è poco variabile (circa 30.000 MPa), l’energia rilasciata dipende dalla lunghezza di rottura della faglia e dallo spostamento relativo tra le sue due facce, entrambi fortemente correlati alla superficie di rottura. Per semplificare, in modo molto approssimativo:

  • magnitudo 6.2 (energia circa 2,5´1018 Nm): rottura 15-20 km e spostamento 0,10-0,15 m
  • magnitudo 7.0 (energia circa 4,0´1019 Nm): rottura 55-60 km e spostamento 0,5-1,0 m
  • magnitudo 7.8 (energia circa 6,3´1020 Nm): rottura ⁓200 km e spostamento 10-12 m.

Sento già qualcuno domandarsi “ma non doveva parlare del terremoto in Turchia?” Il punto è proprio qui.

Il terremoto di L’Aquila ha indotto accelerazioni massime al terreno inferiori a quelle indotte dall’evento turco-siriano, ma dello stesso ordine di grandezza. Tuttavia, i valori di picco si sono manifestati su un’area di poche decine di chilometri quadrati. Se la faglia non fosse stata proprio sotto la città probabilmente gli effetti in termini di danni, feriti, vittime sarebbero stati molto più modesti. Il terremoto turco-siriano ha indotto accelerazioni superiori a 0,5 g su un’area di decine di migliaia di chilometri quadrati. Ha colpito zone con ogni tipo di terreno, in grado di amplificare accelerazioni e spostamenti con fattori anche dell’ordine di due volte. Ha stanato ogni possibile deficienza in centinaia di migliaia di edifici, fatti bene e fatti male.
Se un evento di magnitudo 7.8 avvenisse in qualsiasi punto della dorsale appenninica gli effetti devastanti si sentirebbero dal Tirreno all’Adriatico. Probabilmente producendo diverse decine di L’Aquila.

Un secondo aspetto da non trascurare è connesso alla durata del moto.
Con un forte rilascio di energia le onde sismiche tendono a combinarsi, dando luogo ad accelerogrammi più lunghi (e disordinati), dell’ordine di diverse decine di secondi, soprattutto nella direzione opposta a quella di propagazione della rottura della faglia. E molti tipi di costruzioni (tipicamente quelle storiche in muratura, ma anche edifici moderni tirati su senza badare troppo ai dettagli, come è tipico nei paesi in via di sviluppo) tendono a deteriorarsi ciclo dopo ciclo, finendo per soccombere ad un’azione di lunga durata. Nella direzione di propagazione della rottura della faglia le onde tendono a sovrapporsi, con la possibile formazione di singoli impulsi con grandi accelerazioni, velocità, spostamenti. Un colpo solo, ma spesso mortale.

Un terzo aspetto.
È noto come il danno e la probabilità di collasso dipendano più dalla domanda in spostamento che da un confronto tra forza d’inerzia e resistenza della struttura.
La domanda in spostamento tende a diminuire in funzione della diminuzione della magnitudo e della distanza dalla faglia molto più rapidamente dell’accelerazione. Purtroppo la rottura della faglia è qui dell’ordine delle centinaia di chilometri, cosicché in migliaia di chilometri quadrati la domanda di spostamento è stata dell’ordine delle molte decine di centimetri per un ampio campo di risposta spettrale. Nelle ore e nei giorni che hanno seguito il terremoto sono state diffuse molte registrazioni poi rivelatesi inaffidabili o affette da errori, si veda comunque come esempio (considerandolo dunque verosimile piuttosto che attendibile) lo spettro in spostamento nella figura che segue, ripresa da uno dei primi rapporti disponibili[4] (in ascissa il periodo in secondi, in ordinata la domanda di spostamento, per la componente con orientamento 168° registrata alla stazione 3126).

Schermata 2023-02-15 alle 23.32.53
Si legge una domanda dell’ordine del metro per periodi compresi tra 2 e 6 secondi. In Italia si progetta generalmente per spostamenti inferiori ai 30 cm anche nelle zone ad alta sismicità.

Dopo il terremoto di Loma Prieta[5] fu predisposto un rapporto[6] per il Governatore della California, George Deukmejian, con il coordinamento di George Housner; si intitolava Competing Against Time. Nelle conclusioni si leggevano le righe seguenti.

“Futuri terremoti in California sono inevitabili. Terremoti più forti di Loma Prieta con più intensi moti al terreno accadranno in aree urbane ed avranno severe conseguenze – troppo rilevanti per continuare business as usual. […]

La Commissione ha identificato tre sfide essenziali che devono essere affrontate dai cittadini della California, se vogliono attendersi un futuro ragionevolmente sicuro nei confronti dei terremoti:

  • Assicurarsi che il rischio sismico[7] delle nuove costruzioni sia accettabile.
  • Identificare e correggere le condizioni di inaccettabile sicurezza sismica7 nelle costruzioni esistenti.
  • Sviluppare e implementare azioni che favoriscano una risposta rapida, efficace ed economica agli eventi sismici.

[…] Lo Stato della California non deve aspettare il prossimo grande terremoto, e le probabili perdite di miliardi di dollari e le migliaia di vittime, per affrettare le misure di mitigazione del rischio […].

I terremoti verranno – se saranno catastrofi o no dipende dalle nostre azioni”.

Il mandato del Governatore riguardava i sistemi di trasporto, anche a seguito del crollo del celebre double decker, l’autostrada a viadotti sovrapposti che collegava Berkeley al Bay Bridge e a San Francisco.

“La Commissione avrebbe potuto limitare le sue raccomandazioni ad azioni ritenute necessarie per correggere i problemi dei ponti posseduti dallo Stato. Ma così facendo avrebbe abdicato alla considerazione della più fondamentale responsabilità del governo – garantire la sicurezza pubblica”.

George Deukmejian aveva posto sei specifici temi da approfondire alla Commissione, che nel rispondere concluse con tre sfide (quelle riportate sopra) e otto raccomandazioni, al Governatore, al Direttore del Dipartimento dei Trasporti, alle Agenzie di gestione dei sistemi di trasporto. Rileggetele.

Il Governatore rispose con un Ordinanza[8] che diede il via al programma di adeguamento dei ponti californiani
(“The Director of the Department of General Service shall prepare a detailed action plan to ensure that all facilities maintained or operated by the State are safe from significant failure in the event of an earthquake and that important structures are designed to maintain their function following an earthquake”) ed all’enorme sforzo di ricerca[9] (“The Director of the Department of Transportation shall assign a high priority to development of a program of basic and problem-focused research on earthquake engineering issues, to include comprehensive earthquake vulnerability evaluations of important transportation structures […]”) che lo rese possibile ed efficace.

Sono passati trentaquattro anni.
In molti paesi è cambiato assai poco.
In Turchia è stato intrapreso un piano, avanzato e coraggioso, per isolare sismicamente tutti gli ospedali. I primi dati (per esempio la risposta dell’ospedale, isolato, di Malatya) sembrano confermare l’efficacia della scelta. Purtroppo garantire continuità di funzionamento agli ospedali sembra poca cosa di fronte a quarantamila morti.
Anche io avrei potuto limitarmi a dettagli tecnici sul terremoto in Turchia, i lettori li troveranno presto in moltissime fonti. Il problema non è trovare le informazioni, è capirne l’affidabilità, la rilevanza, l’impatto. E lavorare “in tempo di pace”.

Gian Michele Calvi
Scritto l’11 e il 12 febbraio 2023

Una poesia di Charles Richter
(riportata in: S. E. Hough (2007). Richter’s Scale. Measure of an earthquake measure of a Man. Princeton University Press)

Schermata 2023-02-16 alle 14.24.55

[1] Richter, C.F. (1935). An instrumental earthquake magnitude scale. Bulletin of the Seismological Society of America, 25:1, 1–32

[2] Ibidem

[3] Kanamori, H. and D.L. Anderson (1975). Theoretical basis of some empirical relations in seismology. Bull. Seismol. Soc. Am., 65, 1073-1095

Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84(B5), 2348-2350

[4] Baltzopoulos G., Baraschino R., Chioccarelli E., Cito P., Iervolino I. (2023) Preliminary engineering report on ground motion data of the Feb. 2023 Turkey seismic sequence V2.0 – 10/02/2023

[5] 17 ottobre 1989, magnitudo 7.1

[6] Competing against time, Report to Governor George Deukmejian from the Governor’s Board of Inquiry on the 1989 Loma Prieta Earthquake, George W. Housner, Chairman, Department of General Service, North Highlands, California, 1990

[7] Si noti l’uso della parola rischio, che include pericolosità, vulnerabilità, esposizione, e quindi perdite, per le nuove costruzioni; l’uso della parola sicurezza, con riferimento principale al crollo e quindi alla protezione della vita, per le costruzioni esistenti.

[8] Executive Department State of California Executive Order D-86-90, June 2, 1990

[9] Priestley, M.J.N., F Seible and G.M. Calvi (1996). Seismic design and retrofit of bridges. Wiley

 

Il ruolo dei tecnici nell’emergenza post-sisma: l’importanza della cultura della prevenzione sismica nella formazione scolastica e universitaria (di Michele Galizia)

Riceviamo e pubblichiamo volentieri questo contributo sul tema delle verifiche degli edifici a seguito di un terremoto

Michele Galizia si è laureato in ingegneria civile edile a Padova nel 1980. E’ stato allievo del prof. Alberto Bernardini, il coordinatore del Gruppo di lavoro, costituito dal Gruppo Nazionale per la Difesa dai Terremoti del CNR e dal Servizio Sismico Nazionale del Dipartimento della Protezione Civile, che ha redatto la prima scheda AeDES (Agibilità e Danno Emergenza Sismica) dopo 3 anni di lavoro nel 2000. Ha esercitato la libera professione a Padova e a Venezia.
Come ingegnere volontario ha effettuato le verifiche degli edifici colpiti dal sisma in Irpinia nel 1980, in Abruzzo nel 2009, in Emilia nel 2012 e in Centro Italia nel 2016 e 2017.
Dalla primavera 2021 è in pensione.

Il rischio sismico in Italia è elevato e diffuso.
I recenti e devastanti terremoti che hanno colpito l’Abruzzo nel 2009, l’Emilia nel 2012 e il Centro Italia nel 2016 hanno causato danni elevati a territori molto vasti, con decine di Comuni colpiti, centinaia di morti e decine di migliaia di cittadini coinvolti.
Sono ingegnere civile edile e ho fatto le verifiche degli edifici colpiti dal sisma in Irpinia nel 1980, in Abruzzo nel 2009, in Emilia nel 2012 e in Centro Italia nel 2016 e nel 2017.
Durante le verifiche, a cui assistevano in sicurezza i proprietari degli edifici, ho visto nei loro volti e nelle loro parole la sofferenza e la paura causate dal terremoto. Queste persone alloggiavano temporaneamente da parenti, o nella seconda casa lontana dalla zona colpita, o in albergo oppure in tenda. Dai loro sguardi e dalle loro parole ho compreso che lasciare la propria abitazione colpita dal terremoto e iniziare una altra vita, dove si dipende in tutto e per tutto dagli altri, è una delle peggiori disgrazie che possano capitare.

Allora il compito di noi tecnici era quello di fare prima possibile la verifica dell’immobile, mediante la compilazione della scheda AeDES (Agibilità e Danno Emergenza Sismica, https://terremotiegrandirischi.com/wp-content/uploads/2022/03/scheda-aedes.pdf), per stabilire se era agibile e quindi permettere alle persone di tornare alle loro abitazioni e a una vita normale, oppure inagibile o agibile parzialmente per attivare le procedure dello Stato per ridare una abitazione a questi nostri sfortunati connazionali. In sintesi: fare presto e fare bene. E’ importante rilevare che si tratta di un compito di grande responsabilità umana e professionale, perché “La valutazione di agibilità in emergenza post-sismica è una valutazione temporanea e speditiva – vale a dire formulata sulla base di un giudizio esperto e condotta in tempi limitati, in base alla semplice analisi visiva ed alla raccolta di informazioni facilmente accessibili – volta a stabilire se, in presenza di una crisi sismica in atto, gli edifici colpiti dal terremoto possano essere utilizzati restando ragionevolmente protetta la vita umana. L’esito Agibile va scelto, quindi, se si soddisfa pienamente la precedente definizione”. In media il sopralluogo con esame visivo esterno e interno dell’edificio e la compilazione della scheda AeDES (3 pagine + 1 di istruzioni) impegnavano la squadra composta da 2 tecnici per circa 60 minuti.

In Emilia, colpita il 20 e il 29 maggio 2012, sono stati impegnati circa 1.000 tecnici volontari in turni settimanali con oltre 90.000 verifiche AeDES che hanno permesso in 10 settimane, dall’inizio di giugno ai primi di agosto 2012, di verificare tutti gli edifici colpiti dal sisma.
Dopo questa emergenza sismica nazionale, Il Dipartimento Nazionale di Protezione Civile, con il DPCM dell’8 luglio 2014, ha stabilito che le verifiche di agibilità (compilazione della scheda AeDES) sia compito di tecnici appositamente formati con corsi specifici a livello regionale e organizzati nel Nucleo Tecnico Nazionale.

Il DPCM nelle premesse dice: “Considerato che durante la gestione dell’emergenza post-sismica, nell’ambito delle attività di assistenza alla popolazione, è necessario effettuare speditamente il rilievo del danno e la valutazione di agibilità delle costruzioni, finalizzati al rientro tempestivo della popolazione nelle proprie abitazioni ed alla salvaguardia della pubblica incolumità, con l’obiettivo di ridurre i disagi dei cittadini e gli ulteriori possibili danni; Considerata l’esigenza, maturata in seguito agli eventi sismici degli ultimi anni, di migliorare il sistema di gestione delle operazioni
tecniche di rilievo del danno e valutazione dell’agibilità degli edifici nella fase di emergenza post-sisma, mediante la creazione di un sistema strutturato che preveda l’istituzione di un elenco di tecnici appositamente formati;…”

La prima considerazione che mi venne in mente allora fu che mancava una disposizione transitoria, da utilizzare in una emergenza sismica di rilievo nazionale come l’Emilia. Da tener presente che trattandosi di tecnici volontari, che potrebbero essere non disponibili per vari motivi (lavorativi, familiari, personali) è necessario avere una potenziale disponibilità almeno doppia di quella necessaria, quindi 2.000 – 2.500 tecnici, oltre qualche centinaio di tecnici di supporto come Data Entry. Ma sarebbero stati necessari circa 6 anni, al ritmo di 5-6 corsi con 60 partecipanti all’anno.

Il 24 agosto e il 30 ottobre 2016 c’è stato il terremoto in Italia Centrale. Il Dipartimento Nazionale della Protezione Civile si è trovato con un numero insufficiente di tecnici abilitati AeDES. Nella mia Regione Veneto c’erano in totale 44 ingegneri abilitati AeDES. E coloro che non avevano potuto partecipare al corso AeDES per lo scarso numero di posti a disposizione o per impegni di lavoro, non sono stati utilizzati nella prima fase dell’emergenza. Ma le verifiche da fare erano circa 200.000 e bisognava trovare una soluzione. Mi sarei aspettato una norma transitoria che permettesse di utilizzare i tecnici che avevano fatto le verifiche AeDES in Emilia nel 2012 e in Abruzzo nel 2009.

La soluzione è stata di approvare rapidamente una nuova scheda, la FAST (Fabbricati Agibilità Sintetica post-Terremoto, ALL. 2), che poteva essere compilata da tecnici che dichiaravano ”di aver frequentato il corso AeDES oppure di aver operato come verificatore per precedenti esperienze sismiche oppure di essere esperto in ambito strutturale senza esperienza sul campo”. Da tener presente che la scheda FAST (1 pagina + 1 di istruzioni) è una sintesi della scheda AeDES con gli stessi criteri di valutazione:

” Esito FAST Finale: va scelta una sola delle opzioni riportate. Il giudizio va emesso tenendo conto che: la valutazione di agibilità in emergenza post-sismica è una valutazione temporanea e speditiva – vale a dire formulata sulla base di un giudizio esperto e condotta in tempi limitati, in base alla semplice analisi visiva ed alla raccolta di informazioni facilmente accessibili – volta a stabilire se, in presenza di una crisi sismica in atto, gli edifici colpiti dal terremoto possano essere utilizzati restando ragionevolmente protetta la vita umana. Il giudizio «Agibile» significa che a seguito di una scossa successiva, di intensità non superiore a quella per cui è richiesta la verifica, sia ragionevole supporre che non ne derivi un incremento significativo del livello di danneggiamento generale. L’esito «Edificio agibile» va scelto, quindi, se si soddisfa pienamente la precedente definizione. Invece, se le condizioni di rischio derivanti dallo stato di danneggiamento dello stesso edificio non sono considerabili basse, si opterà per l’esito «Edificio non utilizzabile».“

L’esito ‘edificio non utilizzabile’ comportava che poi l’edificio doveva ulteriormente essere verificato dai tecnici AeDES, che ne accertavano l’inagibilità totale o parziale e quindi dare inizio all’iter per la ricostruzione da parte dello Stato. In media il sopralluogo con esame visivo esterno e interno dell’edificio e la compilazione della scheda FAST impegnava la squadra composta da 2 tecnici per circa 40 minuti. Quindi centinaia di tecnici volontari, me compreso, sono state impegnate per le verifiche FAST. Se la verifica con la scheda FAST dava esito di edificio agibile il cittadino rientrava a casa e la pratica era conclusa. Se la verifica FAST dava esito di edificio non utilizzabile il cittadino restava nella soluzione abitativa provvisoria (parenti, seconda casa o albergo sulla costa marchigiana) e doveva attendere laverifica dei tecnici AeDES, a seguito della quale sarebbe iniziato l’iter della ricostruzione da parte dello Stato.
Quindi allungamento dei tempi del ritorno alla normalità e i cittadini amareggiati per il fatto che la loro abitazione non veniva verificata dai tecnici AEDES, ma dai tecnici FAST. Ho fatto 3 turni settimanali di verifica FAST in Centro Italia (dicembre 2016 nelle Marche, febbraio 2017 in Umbria e maggio 2017 nelle Marche) e in ogni turno di 30 tecnici volontari c’erano 4-6 tecnici AeDES e 24-26 tecnici FAST.
E ogni collega AeDES mi confermava che nella sua regione i tecnici AeDES erano poche decine.

La necessità di aumentare le verifiche AeDES è stata risolta in questo modo: il cittadino si doveva rivolgere ad un tecnico di sua fiducia, per la compilazione della scheda AeDES e la presentazione dell’istanza per la ricostruzione. Il costo del tecnico veniva aggiunto nelle spese rimborsate dallo Stato. Da notare che prima in tutti i terremoti tutti gli interventi di verifica di agibilità sono stati fatti da tutti i tecnici a titolo volontario e gratuito. Tanti di noi hanno anche rinunciato al rimborso delle spese dell’auto e del vitto. Da notare anche che è venuta a mancare la terzietà del tecnico, perché ai tecnici AeDES è fatto divieto, per ovvi motivi, di lavorare nella provincia dove hanno fatto le verifiche.
Questa situazione di mancanza di tecnici AeDES è continuata negli anni successivi.
Recentemente, a seguito di una circolare dell’11 novembre 2021 della STN (Struttura Tecnica Nazionale, cioè l’insieme dei Consigli Nazionali degli ingegneri, degli architetti, dei geologi, dei geometri e dei periti agrari) la FOIV (Federazione Ordine Ingegneri del Veneto) ha comunicato agli Ordini provinciali degli ingegneri del Veneto l’attivazione di un corso AeDES di 60 ore per 60 partecipanti nel mese di febbraio 2022.

Siamo ancora lontani dalla lettera e dallo spirito del DPCM dell’8 luglio 2014 e dalle Indicazioni Operative del Dipartimento Nazionale della Protezione Civile del 29 ottobre 2020:
“Le esperienze anche recenti di gestione delle emergenze sismiche su base nazionale e regionale ha confermato che l’esigenza prioritaria è quella di poter disporre di numeri elevati di tecnici formati per il rilievo con schede Aedes.”
La mia modesta opinione è che sia necessario che la cultura della prevenzione sismica e la compilazione della scheda AeDES siano parte integrante dei programmi delle facoltà universitarie di ingegneria civile, di architettura, di geologia, e dagli istituti superiori per geometri e periti agrari. In tal modo in emergenza sismica ci sarebbe il numero adeguato di tecnici AeDES per la verifica in tempi rapidi di tutti gli edifici colpiti dal sisma, in modo da far rientrare la popolazione nelle proprie abitazioni in caso di agibilità e, in caso di inagibilità, di attivare rapidamente l’iter per la ricostruzione.

Quando le azioni sismiche di progetto vengono superate: colloquio con Iunio Iervolino

La stampa riporta, con attenzione crescente, informazioni sull’avvenuto superamento – in occasione di terremoti forti in Italia – delle azioni sismiche di progetto previste dalla normativa sismica. Il confronto fra le azioni sismiche di progetto, previste dalle attuali NTC, e i valori registrati in occasione di terremoti forti in Italia ha una storia abbastanza recente. Questo confronto è reso possibile dal fatto che le azioni sismiche di progetto sono espresse oggi in termini direttamente confrontabili con quelli delle registrazioni stesse, per esempio mediante spettri di risposta, cosa che non avveniva in passato.
Spesso l’informazione sui superamenti è accompagnata – nella stampa o da commenti inesperti – da un giudizio sommario di inadeguatezza delle norme sismiche e, a volte, dei modello di pericolosità sismica sui quali si appoggiano. Questo giudizio rischia di gettare un’ombra anche sulla sicurezza degli edifici costruiti secondo quelle norme.
Ne parliamo oggi con Iunio Iervolino, ingegnere, professore ordinario per il settore scientifico-disciplinare Tecnica delle Costruzioni presso l’Università Federico II di Napoli, dove coordina anche il dottorato di ricerca in Ingegneria Strutturale, Geotecnica e Rischio Sismico. Tra le altre cose ha conseguito un dottorato in Rischio Sismico ed è stato allievo di C. Allin Cornell alla Stanford University in California. Da circa vent’anni si occupa di ricerca nel campo della pericolosità e del rischio sismico delle costruzioni. Ha recentemente scritto, per Hoepli, Dinamica delle Strutture e Ingegneria Sismica.

Da diversi anni ti sei occupato dei problemi di cui al titolo di questo colloquio. Ricordo un tuo lavoro in cui sostenevi che il confronto fra lo spettro di una singola registrazione con gli spettri della normativa non fosse “lecito”. In altri lavori, pubblicati con i tuoi collaboratori, hai analizzato le caratteristiche e la distribuzione dei “superamenti” in occasione dei terremoti più recenti, il cui numero è aumentato nel 2016 anche a seguito dell’aumento del numero di registrazioni (si veda l’esempio, ormai classico, delle registrazioni di Amatrice). Se non vado errato tu concludi che è impossibile evitare che si verifichino tali superamenti.

La figura è tratta da: Iervolino I., Giorgio M. (2017). È possibile evitare il superamento delle azioni di progetto nell’area epicentrale di terremoti forti? Progettazione Sismica, 8 (3), https://drive.google.com/file//1lAcn0GMlBhvSeYEjgT7U0rdRbFuhsA8x/view

Sì, è praticamente impossibile qualunque sia la misura dell’intensità considerata (PGA, accelerazione spettrale, ecc.), oltre che essere incoerente con la logica dei codici di progettazione sismica più moderni, tra cui quello italiano. Le norme allo stato dell’arte, infatti, invece che fissare una intensità (cioè accelerazione) di progetto, fissano una probabilità tollerata che le azioni di progetto siano superate al sito della costruzione. Per esempio, se il periodo di ritorno di progetto è 475 anni, allora c’è il 10% di probabilità che tale azione sia superata in 50 anni, per definizione. Una volta stabilita tale probabilità di superamento si determina, con la analisi di pericolosità, quale sia la intensità (accelerazione) che vi corrisponde al sito della costruzione. Con questa procedura si fa sì che le intensità di progetto siano diverse per siti diversi, ma che abbiano – per equità – la stessa probabilità di essere superate.
Essendo l’accelerazione di progetto stabilita sulla base di una probabilità che sia superata, è ben strano sorprendersi se essa poi venga effettivamente superata. Al massimo ci si può sorprendere (cioè biasimare l’analisi di pericolosità) se, al sito della costruzione, la misura di intensità in questione è superata troppo frequentemente rispetto a quanto indicato dalla analisi di pericolosità. Tuttavia, siccome essa, sempre per definizione, è superata mediamente ogni 475 anni, vuol dire che parliamo di un fenomeno molto raro, quindi difficilmente nell’ambito dei dati a disposizione da quando si registrano sistematicamente i terremoti (cioè dagli anni ’70 in Italia) si può fare questa valutazione in modo convincente per un qualunque sito [1].

Questo ragionamento dovrebbe anche aiutare a capire che, anche se il superamento della accelerazione di progetto a un dato sito è un fenomeno raro, guardando all’Italia intera ogni qual volta che c’è un terremoto, di una magnitudo da moderata in su, c’è da attendersi che esso provochi almeno un superamento. Questo è il perché i superamenti non ci sembrano rari: perché, per definizione, lo sono per un dato sito, ma non per tutta l’Italia; si veda a tale proposito [2].
Vale anche la pena dire che si può verificare più facilmente, rispetto a quella prevista dalla analisi di pericolosità, la frequenza osservata di superamento di accelerazioni con periodi di ritorno inferiori a 475 anni, e più e basso il periodo di ritorno più è facile fare questa verifica ‘sperimentale’. Essa però, oltre che essere poco interessante perché quelli che interessano la sicurezza strutturale sono i terremoti rari, non sarebbe estrapolabile, almeno non direttamente, per le intensità corrispondenti ai periodi di ritorno più lunghi.

Che i superamenti siano impossibili da evitare è dovuto a questo tipo di normativa oppure al modello di pericolosità adottato?

Direi a nessuna delle due, ma alla conoscenza dei terremoti molto limitata che abbiamo. L’unico modo per trasformare in termini quantitativi, quindi utilizzabili dagli ingegneri (i professionisti), la conoscenza incompleta su un fenomeno, è il calcolo delle probabilità. Ecco perché c’è grandissimo consenso sulla analisi probabilistica di pericolosità sismica, e le critiche a essa portate (ciclicamente) non sono state finora mai convincenti, per chi ha gli strumenti per capire le questioni portate in discussione.
Infatti, siccome i terremoti sono un fenomeno su cui si ha una conoscenza parziale, non si può essere certi che per qualunque valore di accelerazione (intensità del moto al suolo, per essere precisi) si progetti, esso non possa essere superato. Per questo, come detto prima, le norme allo stato dell’arte, invece che fissare una accelerazione, fissano una probabilità tollerata che le azioni di progetto siano superate al sito della costruzione.
Si potrebbe cambiare approccio, passando da probabilità di superamento della azione di progetto accettata a rischio di fallimento strutturale accettato (la ricerca parla, in questo caso, di risk-targeted design [3]); è una strada che si sta cercando di percorrere in alcuni paesi, ma la sostanza non cambierebbe, non ci si può garantire in progettazione che non venga un terremoto che mandi in crisi la struttura.

Qui qualcuno potrebbe obiettare che basterebbe allora proteggersi dal massimo terremoto possibile…

Che – io almeno – non so definire, perché ammesso che lo si possa fare in termini di magnitudo massima e distanza minima dal sito, non lo si può fare in termini di accelerazione che ne scaturisce perché i residui delle leggi di attenuazione sono – in linea di principio – illimitati. Inoltre, ammesso e non concesso che si possa stabilire l’accelerazione massima possibile, non è detto ci siano le tecnologie progettuali e costruttive perché con certezza essa non mandi comunque in crisi la struttura. Da professore di dinamica strutturale devo qui ricordare che anche le accelerazioni (e.g., le pseudo-accelerazioni spettrali) hanno un potere esplicativo limitato della risposta sismica di strutture a molti gradi di libertà non-elastiche e non-lineari (cioè le strutture reali).

Sempre nei tuoi lavori recenti hai sostenuto che il fatto che i valori di progetto possano essere o vengano superati non pregiudica la validità delle norme. Puoi spiegare meglio?

Mi riferisco alla analisi di pericolosità alla base delle norme: i superamenti non solo non la mettono in discussione, ma forse più che altro la confermano. Come dicevo, si può pensare che l’Italia sia un bersaglio su cui si lancia una freccia che sarebbe il terremoto. Il bersaglio è grande, quindi ogni punto raramente sarà colpito (diciamo con un periodo di ritorno di 475 anni), ma la freccia un punto lo colpisce, e ciò sarà caratterizzato dal periodo di ritorno con cui sono scagliate le frecce, che è molto minore di 475 anni. È facilissimo dimostrare analiticamente anzi, che se si guardano le accelerazioni che a tutti i siti hanno 10% di probabilità di essere superate in 50 anni allora, ci si aspetta che il 10% del territorio italiano dovrà avere osservato almeno un superamento in 50 anni. In questo senso dicevo che, più che smentire l’analisi di pericolosità, i superamenti la confermano, a meno che – come si diceva sopra – non si dimostri che i superamenti siano ‘troppi’.

(Rispondendo a questa domanda si può anche tornare a una delle domande precedenti, precisando che i superamenti osservati finora non sono in generale abbastanza per una verifica della frequenza dei superamenti sito per sito, ma permettono una valutazione complessiva dei superamenti in Italia; finora anche questi calcoli non hanno mai convincentemente smentito la pericolosità).

Il messaggio che a volte passa, a volte solo indirettamente, è che se le azioni sismiche superano quelle previste dalle norme l’edificio possa, o debba, crollare. Non tutti hanno chiaro – tra l’altro – il fatto che le nuove norme richiedano la verifica di quattro stati limite. Si tratta di un timore teorico oppure vi sono evidenze (casi) concrete? Nei tuoi lavori fai riferimento a dei margini di sicurezza più o meno intrinseci nelle modalità costruttive, che tuttavia non sono esplicitati nelle NTC. Anche in questo caso, puoi spiegare?

Abbiamo già detto che le azioni sismiche, attraverso la analisi di pericolosità, sono controllate probabilisticamente in modo che sia raro che tali azioni siano superate al sito della costruzione (per esempio mediamente ogni 475 anni, cioè con probabilità 10% in 50 anni). Quindi, per definizione, esse possono essere superate. Abbiamo dimostrato, ma è facile intuirlo, che ciò avviene quando il sito si viene a trovare nei pressi della sorgente di un terremoto da una certa magnitudo in poi. In effetti, il modello di pericolosità MPS04 [5] prevede intrinsecamente che, qualunque sia il sito in Italia, se esso si trova vicino (e.g., entro 5 km) dalla sorgente di un terremoto di magnitudo almeno sei, c’è da aspettarsi che la PGA (ma anche altre ordinate spettrali) con periodo di ritorno 475 anni sia superata. Questi terremoti li abbiamo chiamati ‘terremoti forti’, costruendo la mappa delle magnitudo nella cui area epicentrale c’è da attendersi il superamento delle azioni di progetto [6] (si veda la figura sotto). Come già detto ciò non contraddice l’analisi di pericolosità, ma ne è una caratteristica intrinseca, perché che il sito si trovi nell’area epicentrale di un terremoto di magnitudo da sei in poi è una cosa che avviene – parlando grossolanamente – mediamente, molto più raramente di 475 anni.

Figura 1. Mappa dei terremoti ‘forti’, cioè le magnitudo minime con probabilità superiore al 50% di superare due ordinate spettrali con periodo di ritorno del superamento pari a 475 anni, qualora il terremoto occorresse entro 5 km (in alto), 15 km (al centro) e 50 km (in basso) dal sito. Le aree bianche indicano che per i siti in esse contenuti non ci sono terremoti, secondo il modello [5], che hanno più del 50% di probabilità di superare le ordinate spettrali in questione, qualora occorressero vicino al sito. Figura tratta da [6].

E per quanto riguarda la progettazione?

La progettazione è tale per cui ci sono altri margini di sicurezza (per esempio si usano resistenze cautelative dei materiali, criteri di gerarchia delle resistenze etc.) per cui è lecito aspettarsi che se la struttura è progettata con azioni con periodo di ritorno, per esempio 475 anni, il periodo di ritorno della crisi strutturale sia più grande di 475 anni, eventualmente anche di molto. Inoltre, la progettazione considera che la struttura vada in crisi, cioè sia ‘fallita’ violando lo stato limite di progetto, molto prima che essa ‘collassi’, cioè anche lo stato limite di progetto non è il collasso inteso come scompaginamento strutturale, ma una definizione molto convenzionale dello stesso, e questa è una cautela aggiuntiva.
Tuttavia, c’è da dire che tutti questi margini aggiuntivi sono controllati in modo semi-probabilistico e non probabilistico, per cui il rischio implicito delle strutture progettate secondo norma non è noto al progettista. Per cui non è lecito aspettarsi direttamente il collasso al superamento delle azioni di progetto, ma non si sa esplicitamente quanto, oltre le azioni di progetto, ciascuna struttura può resistere, a meno di fare ex-post analisi molto accurate della struttura progettata. Abbiamo visto in un progetto finanziato al consorzio ReLUIS dalla protezione civile, a cui hanno partecipato i più grandi esperti italiani di ingegneria sismica e che ho avuto (immeritatamente) l’onore di coordinare, che tale margine cambia con la tipologia strutturale e col sito di progettazione [7], per questioni che è difficile approfondire qui. In questo senso è difficile stabilire se e quanto si possa fare affidamento su tale margine ulteriore, perciò per me questo è un tema delicato.
Devo infine aggiungere che ritengo che proprio perché la parte di azioni sismiche è molto chiara nel suo significato (almeno per chi la ha studiata), mentre il resto della sicurezza strutturale è meno trasparente, la pericolosità sismica è sempre messa in discussione, mentre io personalmente ritengo si debba lavorare sul resto della sicurezza implicata dalla progettazione per renderla altrettanto esplicita.

Qualcuno si chiede comunque se non sia il caso di aumentare la severità delle norme, per lo meno nelle vicinanze delle faglie conosciute. Si deve peraltro osservare che le NTC18 hanno adottato le stesse azioni delle precedenti NTC08, che a loro volta non hanno considerato l’incertezza fornita dal modello di pericolosità MPS04. Inoltre, tali azioni risultano generalmente inferiori di quelle previste dall’OPCM 3279/2003. Posto che già ora le azioni previste dalle norme rappresentano un minimo ma non certo un massimo, pensi che un eventuale aumento sarebbe opportuno, valutando il rapporto costi-benefici? E, senza ricorrere all’obbligo, potrebbe essere introdotto come raccomandazione su base volontaria?

Questa è una domanda che è lecito porsi, ma la discussione è per me molto più complessa di come appare. Infatti, se il periodo di ritorno della intensità di progetto è lo stesso ovunque per un sito vicino a una faglia nota e per uno lontano, in principio non ci sarebbe bisogno di differenziare tra chi si trova in prossimità di una faglia oppure no; tuttavia sappiamo che non è possibile conoscere tutte le faglie (almeno in Italia) e per questo usiamo modelli a zone sismogenetiche che, di fatto, le faglie non le considerano esplicitamente. Inoltre, sappiamo che per “effetti di bordo” in alcuni casi confrontabili con l’effetto Doppler della acustica, si possono avere variabilità spaziali del moto sismico intorno alle rotture dei terremoti che possono creare effetti deleteri per alcune strutture (vedi anche una delle domande successive) e che la analisi di pericolosità classica non considera se non ‘mediamente’. Quindi più che alzare le azioni, ci vorrebbero modelli più raffinati (cioè maggiore conoscenza) per le faglie.

C’è da dire invece che, come dicevo nella risposta precedente, abbiamo trovato, che in Italia, le accelerazioni nelle zone ad alta pericolosità oltre il periodo di ritorno di progetto, sono disproporzionalmente più alte rispetto a rispetto a quelle dei siti a bassa pericolosità. In altre parole, le accelerazioni per periodi di ritorno maggiori di 475 anni crescono molto di più che proporzionalmente rispetto a quelle di Milano, per esempio. Questo fa sì che il rischio di fallimento cui è esposta una struttura a l’Aquila è molto maggiore di una struttura della stessa tipologia progettata, per lo stesso periodo di ritorno, a Milano [8]. Questo non ha a che fare con la pericolosità, ma solo col fatto che progettiamo con un numero limitato di periodi di ritorno, mentre quello che succede per periodi di ritorno più grandi comunque influenza la sicurezza. Questo problema non è un limite della norma italiana, ma mondiale, perché è lo stato dell’arte di tutte le normative più avanzate. Forse questa è una questione ancora più rilevante e che si più mitigare con il recente risk-targeted design e che consiste nel progettare fissando un periodo di ritorno del fallimento, e non fissando il periodo di ritorno del superamento della azione sismica. Ovviamente anche in questo caso si fa riferimento alla pericolosità probabilistica, ma si usa in modo diverso.

La tematica del confronto di cui al titolo del colloquio è solo italiana oppure il dibattito è esteso a livello internazionale?

Il tema è di rilevanza mondiale [9] [10]. Negli Stati Uniti si sta cercando di cambiare approccio passando, come detto, da norme che definiscono la probabilità di superamento delle azioni di progetto alla probabilità di fallimento accettata della struttura (risk-targeted design). È la strada giusta, e auspicata molti decenni fa dal padre della pericolosità sismica C. Allin Cornell, ma è anche questo approccio ha i suoi problemi, principalmente dovuti al fatto che la probabilità di fallimento di una struttura è molto difficile controllarla fin dal progetto se non facendo assunzioni forti.
In Europa, nel frattempo, si sta lavorando alla revisione dello Eurocodice 8 per la progettazione sismica, e io presiedo il gruppo italiano per conto dell’UNI. Siccome l’approccio sarà lo stesso delle NTC, le questioni che ci stiamo dicendo si ripropongono allo stesso modo, ma le idee sono poco chiare e la percezione è limitata, soprattutto da parte dei paesi ‘meno sismici’, soprattutto perché questi temi richiedono una competenza molto specifica. Stiamo cercando comunque di mettere l’esperienza del nostro paese e cultura sismica che portiamo, al servizio dell’Europa su questo tema.

Un aspetto emergente, del quale ti sei occupato di recente, riguarda i cosiddetti effetti “near source”, ovvero “near fault”. Ci puoi riassumere brevemente di che cosa si tratta? La normativa attuale italiana non ne tiene conto: esistono normative internazionali che invece hanno già affrontato il problema? Che cosa suggeriscono le tue analisi?

Come dicevo sopra, tra i vari effetti che si osservano vicino alle rotture dei terremoti ce n’è uno potenzialmente di interesse per l’ingegneria sismica: è quello dei cosiddetti terremoti impulsivi per direttività. Succede che, in date configurazioni della rottura rispetto al sito, la registrazione di velocità dello scuotimento sismico può mostrare un grande ciclo che concentra la maggior parte dell’energia portata in dote dal segnale. Che l’energia del segnale sia concentrata in un solo ‘impulso’ può essere particolarmente rilevante per strutture con proprietà dinamiche legate alla durata dell’impulso. Questo è un fenomeno noto da molti decenni e osservato anche in terremoti italiani come quello di L’Aquila [11]. Tuttavia, come dicevo, la sua rilevanza dipende dalla posizione del sito rispetto alla sorgente e se la struttura ha periodo di vibrazione naturale in una certa relazione con quello dell’impulso. In ogni caso, di tale effetto si può tenere in conto nella analisi di pericolosità probabilistica, ma richiede una conoscenza molto accurata delle faglie possibile origine dei terremoti [12].

Fin qui abbiamo parlato di accelerazioni. Non sarebbe forse opportuno ragionare anche in termini di spostamento?

È vero che le strutture si danneggiano per spostamenti (in effetti, rotazioni de nodi nelle strutture a telaio) imposti dai terremoti. Tuttavia, va ricordato che sono le accelerazioni che costituiscono il termine noto delle equazioni del moto delle stesse strutture e determinano tali spostamenti, quindi ha senso definire le azioni sismiche in termini di accelerazione. Inoltre, in effetti, come sai le azioni di norma sono in termini di pseudo-accelerazione che, per definizione, è la forza da applicare staticamente alla massa di un sistema, che abbia un certo periodo di oscillazione, per ottenere lo spostamento massimo imposto dal terremoto che ha quella pseudo-accelerazione spettrale a quel dato periodo [13].

Quanto discusso fin qui riguarda essenzialmente il rapporto fra domanda e capacità nel caso di edifici nuovo ben costruiti. Per edifici costruiti con normative precedenti, oppure in assenza di normativa (oppure costruiti “male” o ancora usurati o rimaneggiati) la questione si pone negli stessi termini?

Permettimi di escludere dalla mia risposta gli edifici costruiti male. Non ho elementi sufficienti per dire che “costruiti male” sia una condizione generalizzata del costruito esistente italiano. Per queste costruzioni ci sarebbe bisogno di una valutazione caso per caso. Più appropriato trovo invece porsi la questione delle strutture costruite con codici di progettazione ora considerati obsoleti o prima della adozione di qualunque norma sismica. Ciò praticamente tutto il patrimonio pre-terremoto di Messina del 1908 (tranne buone pratiche costruttive storiche in alcune zone di Italia). Tali strutture possono essere state progettate per soli carichi verticali o con azioni sismiche (cioè orizzontali) valutate con metodi convenzionali, cioè non su base probabilistica, e con criteri progettuali meno efficaci di quelli che usiamo oggi. In entrambi i casi tali strutture hanno comunque una capacità sismica, anche se controllata ancora meno di quelle di nuova progettazione e con minori margini di sicurezza attesi (per esempio per assenza di gerarchia delle resistenze). Questo è un tema molto rilevante per quanto riguarda la sicurezza sismica: infatti si può dire che le strutture costruite con le correnti norme tecniche, ancora per molto tempo saranno una frazione molto piccola dell’intero patrimonio italiano.

Riferimenti

  1. Iervolino, I. (2013). Probabilities and fallacies: Why hazard maps cannot be validated by individual earthquakes. Earthquake Spectra29(3), 1125-1136.
  2. Iervolino, I., Giorgio, M., & Cito, P. (2019). Which earthquakes are expected to exceed the design spectra? Earthquake spectra35(3), 1465-1483.
  3. Luco, N., Ellingwood, B. R., Hamburger, R. O., Hooper, J. D., Kimball, J. K., & Kircher, C. A. (2007). Risk-targeted versus current seismic design maps for the conterminous United States.
  4. Iervolino, I., Giorgio, M., & Cito, P. (2017). The effect of spatial dependence on hazard validation. Geophysical Journal International, 209(3), 1363-1368.
  5. Stucchi, M., Meletti, C., Montaldo, V., Crowley, H., Calvi, G. M., & Boschi, E. (2011). Seismic hazard assessment (2003–2009) for the Italian building code. Bulletin of the Seismological Society of America, 101(4), 1885-1911.
  6. Cito, P., & Iervolino, I. (2020). Rarity, proximity, and design actions: mapping strong earthquakes in Italy. Annals of Geophysics63(6), 671.
  7. Iervolino, I., Spillatura, A., & Bazzurro, P. (2018). Seismic reliability of code-conforming Italian buildings. Journal of Earthquake Engineering, 22(sup2), 5-27.
  8. Cito, P., & Iervolino, I. (2020). Peak‐over‐threshold: Quantifying ground motion beyond design. Earthquake Engineering & Structural Dynamics, 49(5), 458-478.
  9. Hanks, T. C., Beroza, G. C., & Toda, S. (2012). Have recent earthquakes exposed flaws in or misunderstandings of probabilistic seismic hazard analysis? Seismological Research Letters, 83(5), 759-764.
  10. Stirling, M., & Gerstenberger, M. (2010). Ground motion–based testing of seismic hazard models in New Zealand. Bulletin of the Seismological Society of America, 100(4), 1407-1414.
  11. Chioccarelli, E., & Iervolino, I. (2010). Near‐source seismic demand and pulse‐like records: A discussion for L’Aquila earthquake. Earthquake Engineering & Structural Dynamics, 39(9), 1039-1062.
  12. Chioccarelli, E., & Iervolino, I. (2013). Near‐source seismic hazard and design scenarios. Earthquake engineering & structural dynamics, 42(4), 603-622.
  13. Iervolino I. (2021). Dinamica delle Strutture e Ingegneria Sismica, Hoepli, Milano.

Sismabonus, un aggiornamento (colloquio con Alessandro Grazzini)

I recenti provvedimenti governativi hanno aggiornato la possibilità di usufruire degli aiuti di Stato per ridurre la vulnerabilità sismica degli edifici. Abbiamo chiesto a Alessandro Grazzini, che già aveva discusso l’argomento in https://terremotiegrandirischi.com/2020/07/02/sismabonus-qualche-spiegazione-dedicata-a-chi-abita-gli-edifici-colloquio-con-alessandro-grazzini/, di illustrarci le novità.

Alessandro, ci puoi riassumere le novità introdotte, di cui hai parlato ad esempio in https://www.ediltecnico.it/79648/sismabonus-superbonus-110-classificazione-sismica/?

Il D.L. 19/05/2020 n. 34 (c.d. Decreto Rilancio a sostegno dell’economia dopo il lockdown COVID-19) ha introdotto un superbonus di detrazione fiscale al 110% da utilizzare anche per i lavori di miglioramento sismico relativi al tradizionale Sismabonus. Il Superbonus può essere sfruttato per lavori svolti dal ‪1° luglio 2020 al 31 dicembre 2021, anche se ci auguriamo una proroga in quanto gli interventi di miglioramento sismico, come sappiamo, richiedono più tempo nella pianificazione e nell’esecuzione. La novità principale consiste nel fatto che la super aliquota del 110% vale sia per gli interventi di semplice consolidamento statico (cucitura delle lesioni, consolidamento delle fondazioni, rinforzo di solai solo per fare qualche esempio) sia per gli interventi di miglioramento sismico.

Il Decreto ha eliminato la necessità di dimostrare che gli interventi abbiano portato al passaggio di una o due classi di “rischio”, come richiesto dalla normativa precedente. Non è forse un passo indietro nella direzione della prevenzione?

Col Superbonus tutti gli interventi strutturali sono premiati indifferentemente con l’aliquota di detrazione del 110% a prescindere dalla classe di rischio sismico che si è ottenuta a seguito dei lavori, facendo pertanto decadere la precedente differenziazione delle aliquote in base al risultato di miglioramento sismico raggiunto. Inoltre il Superbonus è stato esteso a un maggior ventaglio di interventi strutturali, anche solo locali, che sebbene utili ai fini statici non permettono di valutare e perseguire un aumento della sicurezza sismica.
Faccio un esempio: se inserisco delle catene solo in un piano di un edificio alto 4 piani, il tecnico può dimostrare che la situazione statica del fabbricato sia migliorata: magari le catene servono per contrastare la spinta di alcune volte; tuttavia averle inserite solo ad un piano potrà al massimo aver bloccato uno o due cinematismi di ribaltamento sismico della singola parete interessata, ma non contrastare le altre possibilità di ribaltamento delle singole pareti o dell’insieme di pareti che costituiscono la facciata, oltre a non contribuire ad alcun aumento di resistenza dell’intero scheletro strutturale.
Pertanto il loro inserimento così limitato non sarà sufficiente a ridurre il rischio sismico neppure di una classe. Tuttavia è una spesa coperta dal Sismabonus 110%.

E come si “valuterà” dunque la riduzione della vulnerabilità sismica dell’edificio sottoposto ai lavori?

La classificazione sismica serve a sensibilizzare il cittadino sui rischi della propria abitazione, aiutarlo a capire quali sono le vulnerabilità principali e quantificare in modo intuitivo di quanto potrà migliorare la risposta sismica del proprio fabbricato. Sebbene in questo frangente non sia più obbligatoria, è auspicabile che i tecnici continuino ad utilizzarla per queste finalità. Una volta intrapreso il calcolo strutturale per la progettazione dell’intervento, in generale costa davvero poco valutare anche la classificazione sismica.
Il professionista dovrà certificare, mediante i tradizionali calcoli statici, che l’intervento di consolidamento abbia migliorato la sicurezza strutturale almeno della porzione di struttura interessata. Nel caso di intervento antisismico, varranno le consuete procedure di calcolo legate alla modellazione complessiva del fabbricato da cui ricavare il rapporto tra l’accelerazione al suolo che può sopportare la struttura e quella richiesta dalla normativa tecnica per un edificio di nuova realizzazione. Ossia uno dei due parametri contenuti nella classificazione sismica, l’indice di sicurezza descritto nella precedente intervista.
A questo punto costa poco al professionista calcolare anche il PAM (perdita annua media) e redigere la classificazione sismica, anche se non è obbligatoria, ma auspicabile per far capire meglio al committente il guadagno in termini di sicurezza.

Il Sismabonus è senz’altro uno strumento importante per cominciare ad affrontare il problema della riduzione della vulnerabilità sismica degli edifici. Con l’offerta del 110% lo Stato ha deciso di accollarsi praticamente per intero il costo dei lavori, evidentemente perché la disponibilità dei cittadini ad assumere una quota di compartecipazione ai costi era risultata scarsa.
Mi viene una domanda: il Sismabonus verrà concesso indipendentemente da una valutazione su eventuali azioni volontarie di compromissione della vulnerabilità e/o non rispetto della normativa?

Per usufruire del superbonus 110% occorrerà avere un certificato di conformità urbanistica che attesti al massimo la presenza di lievi difformità (alcuni chiarimenti dell’Agenzia delle Entrate parlano di una tolleranza del 2% delle misure prescritte relative a cubatura, distacchi, altezze, superficie). In presenza di abusivismi maggiori lo Stato non riconoscerà alcuna detrazione fiscale. La ingente quantità di certificazioni richieste per accedere al superbonus e l’aumento consistente dei controlli dovrebbero rappresentare la giusta garanzia per distribuire l’incentivo fiscale solo a chi è in regola.

Lo strumento dell’incentivo fiscale lascia alla libera iniziativa dei cittadini la scelta se prendersi cura o meno della propria (e di altri) sicurezza. In aggiunta agli ovvi problemi relativi alla gestione dei condomini, non vi è anche il rischio di interventi a “macchia di leopardo” in centri abitati dove l’eventuale terremoto potrà compromettere la “agibilità” di tutto l’abitato?

Inizialmente è probabile e addirittura fisiologico attendersi una distribuzione a “macchia di leopardo”. Occorre considerare sempre da che punto iniziale partiamo: un patrimonio edilizio esistente molto variegato caratterizzato da scarsa manutenzione e un’alta vulnerabilità sismica. E’ impossibile che tutti i proprietari partano nello stesso momento ad eseguire lavori di miglioramento sismico. Inizierà qualcuno, elevando il grado di sicurezza del proprio fabbricato. Ma resterà un gap rispetto alla vulnerabilità del vicino di casa che non ha ancora eseguito alcun intervento.
Questa rappresenta sicuramente una fase intermedia di potenziale rischio collettivo in caso di forte scossa di terremoto, in quanto come sappiamo gli edifici migliorati potrebbero comunque risultare inagibili per i collassi di quelli adiacenti non consolidati. Ma trattandosi di un processo a medio-lungo termine di progressiva sensibilizzazione del rischio e agevolazione fiscale per intraprendere in autonomia i necessari interventi di mitigazione sismica, resta auspicabile che col giusto tempo questo gap tenda a ridursi, al fine di avere aggregati edilizi o paesi quasi interamente resilienti.

Per finire: i benefici si applicano nelle zone sismiche 1, 2 e 3, secondo la classificazione attuale di competenza di ciascuna Regione. Posto che sembra ragionevole procedere secondo priorità, andrebbe comunque ricordato che la vulnerabilità sismica degli edifici, che è l’oggetto degli interventi, può essere molto elevata anche in zona 4, proprio perché in gran parte della zona non è mai stata applicata nessuna normativa sismica, oppure lo è stato con varie limitazioni. Sarebbe bene, insomma, che non passasse il messaggio che gli edifici in zona 4 sono “sicuri”, e che scuotimenti forti posso verificarsi anche lì, sia pure con probabilità molto bassa; concordi?

Sono perfettamente d’accordo con te. Hai usato il termine giusto: si parla di vulnerabilità, che deriva dal degrado dei materiali e dalla mancanza di manutenzione. Situazione pericolosa anche solo a livello statico, indipendentemente dalla mappa sismica. Magari con detrazioni più basse, ma sarebbe utile estendere il Sismabonus anche ai fabbricati della zona 4.


Sismabonus: qualche spiegazione dedicata a chi abita gli edifici (colloquio con Alessandro Grazzini)

I problemi legati alla pandemia Covid-19 hanno messo in secondo piano quelli legati alla sicurezza sismica. Tuttavia, in modo apparentemente sorprendente il Governo ha deciso di sostenere l’iniziativa del Sismabonus aumentando addirittura al 110% il valore del contributo dello Stato sotto forma di credito di imposta, abbassando il periodo di recupero del credito e agevolando la possibilità di cederlo a banche o imprese che possono farsi promotori delle ristrutturazioni.
L’iniziativa del Sismabonus nacque quando un Governo – come vedremo – cercò di rendere operativo il concetto secondo il quale è meglio spendere soldi per ridurre i danni piuttosto che per ripararli; ma, e questa fu la novità, introdusse il concetto che il problema non riguarda solo lo Stato, ossia la collettività, ma anche – almeno in parte – i proprietari. Da questo concetto, semplificando, proviene il Sismabonus.
La comunicazione al pubblico su questo argomento non è mai stata molto dettagliata. Vi sono molti articoli tecnici che ne parlano, ma è difficile trovare materiale che spieghi in modo chiaro i vantaggi. Spesso i proprietari di casa si affidano agli ingegneri in un modo simile a come un malato si affida al chirurgo che gli consiglia la soluzione migliore, che poi la praticherà nei fatti. Ora, un paziente non deve certo studiare medicina per capire ma è giusto che richieda qualche spiegazione e qualche alternativa. Questo dovrebbe avvenire anche nel caso del Sismabonus.

Ne parliamo oggi con Alessandro Grazzini, assegnista di ricerca presso il Dipartimento di Ingegneria Strutturale Edile e Geotecnica del Politecnico di Torino, esperto in consolidamento e miglioramento sismico degli edifici storici in muratura, che ha scritto diversi interventi in materia che vengono ripresi nelle sue risposte. Alla formulazione delle domande ha contribuito Carlo Fontana.

Quando è nata l’iniziativa del Sismabonus e come si è sviluppata in questi anni? Sono disponibili dati relativi all’utilizzo?

Lo strumento del Sismabonus nasce con la Legge di Bilancio del 2017, subito dopo il terremoto del Centro Italia, per sensibilizzare maggiormente i cittadini sul tema della sicurezza delle loro case e fornire loro uno strumento tecnico-finanziario che incentivi gli interventi privati per la riduzione del rischio sismico. Questo rischio, a volte non così avvertito diffusamente dall’opinione pubblica, dipende sia dalla frequenza e intensità con cui accadono i terremoti in determinate aree ben identificate sulla mappa sismica italiana, sia dall’elevata vulnerabilità del patrimonio edilizio. Esiste ancora oggi un gran numero di edifici antichi che non rispondono ai minimi requisiti di sicurezza in caso di forte terremoto.
Mentre i costi sociali e in perdite di vite umane rimarranno incalcolabili, limitare i danni in caso di terremoto significa salvare un maggior numero di vite umane e gestire in tempi più brevi la riparazione, limitando anche i disagi socio-economici. Per arrivare a questo risultato occorre partire da una base indispensabile: ovvero avere edifici esistenti molto più resistenti al sisma, quasi come quelli di nuova progettazione. Gli edifici privati di Norcia, precedentemente rinforzati in modo efficiente dopo il sisma del 1997, hanno dimostrato che investire in questa direzione conviene. Sono nuovamente inagibili. Ma non rasi al suolo come quelli di Amatrice. La comunità che li abitava potrà ritornare ad insediarsi nei medesimi luoghi di origine con costi inferiori a quelli della completa demolizione e ricostruzione. Significa salvare vite umane.
Per questo il legislatore ha scelto di intraprendere una strada battuta con successo affidandosi al già collaudato meccanismo delle detrazioni fiscali. Tuttavia, l’esordio del Sismabonus è stato molto timido malgrado le alte percentuali di detrazione fiscale offerte. Le pratiche sono state fino ad oggi inferiori, anche come ordine di grandezza, rispetto a quelle più gettonate delle ristrutturazioni edilizie e dell’Ecobonus, già conosciute e ampiamente utilizzate dall’opinione pubblica.

Quali sono i motivi?

I motivi sono molteplici. Complessità del progetto strutturale, che comporta oneri e tempi maggiori rispetto a quello di una semplice coibentazione. Per valutare il rischio sismico di un edificio occorre spesso una modellazione al computer molto complessa, oltre all’esecuzione di prove diagnostiche per la caratterizzazione delle resistenze meccaniche e della qualità degli elementi portanti.  Ancora scarsa sensibilità dell’opinione pubblica al tema della sicurezza del patrimonio immobiliare, contestualmente alla crisi economica che porta ad investire somme ridotte sull’abitazione, e spesso più propense all’Ecobonus o alle semplici ristrutturazioni. Inoltre mettere in sicurezza l’edificio comporta a volte cantieri più lunghi con lavori incompatibili con la presenza delle persone all’interno, pertanto può sussistere in alcuni casi anche il disagio di affrontare un trasloco temporaneo del nucleo familiare. Tuttavia resta evidente che questa è la strada principale da percorrere. Se vogliamo vivere più sicuri nelle proprie abitazioni, i cittadini prima di tutti devono prendere coscienza del rischio sismico e, con l’aiuto dello Stato, attivare i cantieri della messa in sicurezza; il prima possibile.

La “classificazione sismica” degli edifici (termine discutibile, che forse non a caso viene confuso con la zonazione di competenza regionale), ovvero la valutazione del rischio singolo del singolo edificio, è in uso ormai da qualche tempo. È possibile dare un’idea sintetica, ovviamente semplificata, di come le varie tipologie costruttive (cemento armato, muratura, misto etc.) ed epoche di costruzione sono state prevalentemente classificate? Probabilmente ad un addetto ai lavori ogni classe fa venire in mente un tipo di edificio. Gli utenti potrebbero trovare utile un primo riferimento di massima di questo tipo. 

La classificazione è funzione delle vulnerabilità dell’edificio, senza specifici riferimenti alla tipologia strutturale. Deriva dalla qualità degli elementi portanti, come la tessitura muraria, le resistenze, gli schemi di armatura degli elementi in cemento armato, la presenza o assenza di collegamenti tra solai e pareti, l’efficacia del comportamento scatolare, ecc. La classificazione è specifica per ogni singolo edificio. Così si può anche trovare un edificio in muratura ben costruito in una classe inferiore (lettere più “alte”) rispetto ad uno in cemento armato progettato prima del 1971 e magari mal costruito, per esempio. Gli utenti devono comunque considerare che un edificio di nuova progettazione, verificato ai minimi requisiti richiesti per la sicurezza sismica, si attesta all’incirca nella classe B, e non in A+.
Ovviamente molti edifici esistenti, soprattutto quelli costruiti prima delle prime norme antisismiche o mal costruiti/mantenuti, si posizionano allo stato di fatto nelle classi F o al più E. Senza distinzione di tipologia costruttiva. Se costruiti senza dettagli antisismici o soggetti a forte degrado, risiedono tutti nelle classi più alte (lettere più “basse”). Un po’ come accade per la certificazione energetica di un edificio datato, privo di coibentazioni, con caldaia e serramenti vecchi: si attesta inequivocabilmente nella classe a più alto consumo energetico.

Uno dei maggiori elementi di diffidenza, per quello che ho potuto percepire da persone sensibili al problema della sicurezza sismica e anche disponibili ad affrontare costi e disagi, è la scarsa comprensibilità, in termini di scala della sicurezza sismica, dei vari livelli “di rischio” previsti dal Sismabonus. Il pubblico non è certo in grado di decifrare concetti abbastanza astrusi quali le perdite annue medie (PAM), che inducono a credere che in ogni anno si verifichino danni sismici. In definitiva, che cosa vuol dire in concreto in termini di sicurezza sismica – ad esempio – diminuire di due classi il rischio sismico di un edificio?

La classificazione è uno strumento efficace per offrire al cittadino una valutazione facilmente comprensibile del rischio sismico della sua abitazione, sulla falsa riga di quanto già fatto con la certificazione energetica dove le classi contrassegnate con le lettere e le graduazioni di colore ad esse associate favoriscono al cittadino un’idea qualitativa del consumo energetico della propria abitazione. Qui è la stessa situazione. Provo a spiegare brevemente i due parametri su cui si basa la classificazione sismica. Il primo è la Perdita Annuale Media attesa (PAM), ossia quanto sarebbe l’onere economico da sborsare ogni qual volta l’edificio si danneggi in modo grave dopo una grossa scossa di terremoto. Chiaramente, più l’edificio è vulnerabile, maggiore sarà questo costo, che rappresenta appunto una perdita economica che lo Stato, insieme al cittadino, vogliono limitare in caso di forte evento sismico. L’altro parametro è più ingegneristico, e rappresenta un indice di sicurezza che attesta quanto sia vicina o distante la resistenza sismica del fabbricato se paragonata con quella di una casa di nuova costruzione progettata con gli attuali requisiti di sicurezza sismica dettati dalle recenti norme tecniche.
Nella grande maggioranza degli edifici esistenti questo indice è inferiore ad 1 perché l’accelerazione che potrebbe sopportare la struttura (in termini di capacità) è inferiore rispetto a quella prescritta dalle norme tecniche (in termini di domanda di sicurezza). I motivi sono molteplici, prima fra tutti la constatazione che moltissimi fabbricati esistenti sono stati progettati e costruiti prima delle norme antisismiche. Tengo a precisare che, sebbene non sia sempre possibile negli edifici esistenti (per ragioni economiche e/o tecniche) raggiungere un’uguaglianza tra capacità e domanda di sicurezza, tuttavia il miglioramento della capacità rappresenta già un buon risultato per ottenere un edificio più sicuro e meno danneggiabile. Il caso degli edifici di Norcia, consolidati ad un 60% della domanda, conferma la validità dell’intervento nel tempo.
Chiaramente, all’aumentare dell’indici di sicurezza, si abbasserà il PAM, ossia i costi legati alle riparazioni perché l’edificio maggiormente consolidato si danneggerà di meno, in modo meno grave, e quindi con tempi di inagibilità e recupero più brevi.

Che relazione c’è fra le classi di rischio del Sismabonus e altri due concetti abbastanza difficili per il pubblico, quali i cosiddetti “miglioramento sismico” e “adeguamento sismico”, dei quali già poco era chiaro il termine di aumento di sicurezza?

L’ “adeguamento sismico” consiste in una serie di interventi, a volte molto invasivi e sicuramente più costosi, per raggiungere gli stessi livelli di sicurezza di un edificio di nuova progettazione. Significa arrivare ad avere l’indice di rischio pari ad 1. Tuttavia, soprattutto in edifici storici o comunque di pregio, questo significherebbe devastarli e perdere i loro connotati storico-architettonici. All’adeguamento, spesso è preferibile attuare un “miglioramento sismico”, ossia non raggiungo l’unità nell’indice di sicurezza ma incremento comunque la capacità della struttura, ovvero l’accelerazione sismica che può sopportare. E questo, a mio modo di vedere, rappresenta già un bel passo in avanti, soprattutto nei casi (molteplici) in cui si parte con vulnerabilità molto elevate e una capacità quasi tendente a zero. (https://www.ediltecnico.it/72186/miglioramento-sismico-edifici-storici-sicurezza-conservazione/).
In un edificio esistente, per esempio in muratura, occorrerà prima di tutto intervenire sulla legatura dei suoi elementi portanti (solai e pareti), in modo da ottenere un buon comportamento d’insieme durante la scossa sismica ed evitare che singole pareti ribaltino a terra. Questo può essere ottenuto anche con semplici interventi puntuali e non invasivi, come l’inserimento delle catene e il rinforzo dei solai esistenti. Se si ha in previsione di rifare il tetto, procedere all’inserimento di presidi antisismici come il cordolo sommitale e preferire schemi di copertura non spingente. Sono tutti dettagli che poi faranno la differenza al momento opportuno. (https://www.ediltecnico.it/78440/sismabonus-come-detrazione-interventi-locali/).
Se sarà necessario intervenire anche sulle resistenze delle pareti o dei telai in cemento armato, a questo punto si passerà a lavori più onerosi che garantiranno un miglioramento sismico più consistente. (https://www.ediltecnico.it/78805/sismabonus-intervento-esteso-riduzione-rischio-detrazioni/; https://www.ingenio-web.it/26439-analisi-criteri-e-suggerimenti-per-scegliere-la-tecnica-di-rinforzo-adeguata-alledificio-esistente).
Ricordo, cosa non trascurabile, che molti rischi per l’incolumità delle persone derivano all’interno delle proprie abitazioni da tutta una serie di elementi non strutturali ma la cui caduta può comportare gravi danni alle persone: controsoffitti, pareti di tamponamento, mobili. Anche su di essi occorre intervenire. (https://www.ingegneri.cc/verifiche-elementi-non-strutturali.html).
Molti interventi di adeguamento sismico normati e suggeriti a partire dagli anni 70-80, consistenti in pesanti protesi in c.a., sostituzione degli originali solai e tetti in legno con strutture pesanti in c.a., hanno in alcuni casi fallito dopo le successive grandi scosse sismiche, se inseriti su strutture murarie già molto compromesse e non adeguatamente consolidate. La finalità dell’intervento sismico non deve stravolgere l’originario schema strutturale, portando ad un ibrido non facilmente interpretabile, bensì migliorarlo nei punti di vulnerabilità. Spesso è sufficiente intervenire con tecniche tradizionali, o riviste con materiali moderni, ma sempre compatibili con l’originaria tecnica costruttiva del fabbricato.

Gli interventi di riduzione del rischio, o comunque della vulnerabilità sismica, richiedono risorse, competenze e tempi di esecuzione. A meno che gli interventi vengano realizzati durante una ristrutturazione completa dell’immobile o di sua parte (come avvenne ad esempio nel mio caso, pre-Sismabonus purtroppo…..) è possibile che gli inquilini debbano spostarsi e vivere in un alloggio diverso. Questa eventualità accresce le difficoltà ad accettare l’iniziativa. Hai qualche informazione relativa a casi reali?

Rappresenta sicuramente il limite logistico più forte, se l’intervento viene eseguito su un edificio già abitato. Tuttavia, molti lavori di rinforzo possono essere anche solo puntuali, come l’inserimento di tiranti, il consolidamento di un solaio, le cuciture di lesioni, il rifacimento di una copertura con dettagli antisismici, per fare solo alcuni esempi, che al limite potrebbero richiedere delle inagibilità parziali (nel tempo e nello spazio) compatibili con la convivenza di persone all’interno dell’abitazione. Poi ci sono interventi più estesi (e maggiormente performanti per diminuire le classi di rischio), che riguardano l’aumento delle resistenze degli elementi portanti dell’intero scheletro strutturale della casa (murature o elementi in cemento armato), che potrebbero richiedere l’allontanamento dall’abitazione per alcune settimane. Molti interventi possono essere pianificati nel tempo a più riprese, magari in concomitanza con periodi di vacanza fuori dall’abitazione principale.

Il salto di due classi non ha lo stesso costo in tutte le zone italiane, ma il beneficio economico è uguale. Capisco che sia un problema nel problema, ma mi piacerebbe avere la tua idea in proposito.

È vero, sicuramente migliorare la sicurezza di un edificio destinato a subire terremoti di maggiore intensità e frequenza data la sua ubicazione in un’area ad alto rischio, non avrà il medesimo onere economico di una abitazione posizionata in un’area a basso rischio. Il legislatore dovrà probabilmente rivalutare i massimali a disposizione per le detrazioni fiscali, prevedendo un tetto di importo più alto per le zone ad alto rischio sismico. Oppure meccanismi fiscali più vantaggiosi.

Adesso ti pongo domande maturate da mie riflessioni, che riguardano più la strategia globale che non il Sismabonus propriamente detto.
Prima di tutto, il Sismabonus “vede” un edificio come unità minima di intervento, ma anche massima. MI spiego: io posso benissimo chiederlo per ristrutturare un immobile nel centro storico di una certa località; arriva un terremoto e danneggia gravemente il centro storico a eccezione del mio edificio che si conserva benissimo. A quel punto io sarò costretto comunque a sloggiare come gli altri abitanti per molto tempo e forse per sempre. Non è stato un buon affare né per me né per lo Stato (cioè noi) che ci ha messo i soldi….

 È un problema, hai ragione, ed è già successo in molti crateri sismici. Tuttavia, se ognuno non inizia a mettere nella collettività il proprio contributo, non si raggiungerà mai un risultato collettivo efficace ed esteso. La sicurezza degli aggregati edilizi è complessa. Ho visto unità strutturali consolidate rimanere integre ma martellare e distruggere, a causa della loro maggiore rigidezza, l’unità adiacente non rinforzata. Col risultato, come dici tu, che anche quella rimasta in piedi è diventata inagibile a causa del pericolo derivante dai crolli circostanti. O addirittura rischiare la demolizione, anche se la struttura è salva, perché l’intero borgo verrà ricostruito altrove. Provo a risponderti con un paragone medico di stretta attualità sanitaria: se si vaccinano in pochi, non si otterrà mai l’immunità di gregge. Credo che la stessa considerazione possa essere estesa alla sicurezza sismica degli aggregati edilizi. Difficile mettere d’accordo proprietari diversi, con differenti disponibilità economiche. Però, magari eseguendo lavori distinti differenziati nel tempo, si può ambire a raggiungere una resilienza collettiva che non faccia più correre il pericolo della dislocazione dei borghi.

Nel nostro paese la casa è sacra e ciascuno è abbastanza libero di costruire in barba alle regole, arrivando fino all’abusivismo. Una situazione come quella che si verifica in alcune città degli Stati Uniti, in cui certi edifici vengono definiti “pericolosi” e pertanto “inabitabili” o anche da demolire è pressoché impensabile. È logico/accettabile che il Sismabonus (risorse della comunità) venga concesso, ad esempio, a edifici che avrebbero dovuto essere costruiti secondo le norme sismiche e non lo sono, oppure hanno subito ristrutturazioni inopportune/illegali, o addirittura edifici abusivi?
E, parallelamente, è logico che lo Stato rimborsi il 50% per una ristrutturazione non “sismica” (non Sismabonus) di un edificio in zona sismica?

Sicuramente una buona parte della grande vulnerabilità sismica del patrimonio immobiliare deriva da interventi scellerati di ampliamento, elevazione, parti abusive costruite in barba ai criteri di sicurezza. È un problema complesso, che necessita di risposte ad hoc dal punto di vista amministrativo. Sarebbe opportuno non concedere l’incentivo fiscale, prima almeno di aver condonato l’abusivismo con una ammenda ad esso proporzionale. Per fare questo, occorre rendere obbligatoria una verifica strutturale per ogni edificio esistente che individui anche le parti non costruite a norma di legge. Si ritorna al dibattuto tema del certificato di idoneità statica per il costruito esistente. Sicuramente auspicabile, ma anche in questo caso da incentivare fiscalmente perché oneroso per complessità e responsabilità del tecnico incaricato.
Riguardo la semplice ristrutturazione, concordo con te che almeno nelle aree a maggior pericolosità sismica l’accesso allo strumento delle detrazioni fiscali in generale dovrebbe avvenire contestualmente all’obbligo di far eseguire almeno una verifica della vulnerabilità sismica per rendere il proprietario cosciente del rischio della casa in cui vive. Il buon senso vorrebbe che si intraprendessero prima gli interventi di messa in sicurezza strutturale, e poi, se ci sono ancora disponibilità economiche, anche la ristrutturazione edilizia e la coibentazione. E non viceversa.
Ho già espresso le mie perplessità sul bonus facciate, non perché non sia utile, anzi, ma il rischio è di offrire al cittadino tante possibilità di detrazione fiscale e di lavori da poter eseguire con essi, senza aiutarlo a comprendere che esistono alcune priorità, che riguardano prima di tutto la sicurezza delle persone che vivono all’interno delle proprie abitazioni. Il rischio è di rifare la facciata perché il cittadino tiene molto all’estetica, senza essersi minimamente preoccupato se quella parete offra la necessaria sicurezza sismica in caso di terremoto (https://www.ediltecnico.it/76133/detrazioni-fiscali-edilizia-incremento-ristrutturazione-sicurezza/)

Supponiamo che un edificio abbia diminuito la sua classe di rischio di qualche unità usufruendo del Sismabonus. Domani viene un terremoto e succede che l’edificio si danneggia “più del previsto”. Che cosa deve succedere a questo punto? Paga sempre lo Stato?

Sappiamo bene che una struttura, anche consolidata, sarà comunque soggetta ad una probabilità che il suo danneggiamento vada oltre i limiti previsti. Fa parte del calcolo probabilistico su cui si basa la moderna ingegneria sismica. Oggi le norme per le nuove costruzioni in zone sismiche prevedono che gli edifici non si danneggino per terremoti di bassa intensità, non abbiano danni strutturali per terremoti di media intensità e non crollino in occasione di terremoti forti, pur potendo subire gravi danni.
Aver migliorato sismicamente il proprio edificio, aderendo al Sismabonus, significa che, in caso di una forte scossa di terremoto, diminuisce il rischio di morire sotto il crollo e nello stesso tempo riduce l’entità dei danni con costi di ricostruzione ridotti, che probabilmente saranno o ad onere sempre dello Stato, oppure, se il legislatore lo riterrà opportuno, a carico di un’assicurazione. Il cui costo potrà essere proporzionale alla classe di rischio sismico, per esempio. Ma queste scelte sono di carattere politico e legislativo. Da ingegnere, ritengo che riuscire a migliorare la resilienza collettiva del costruito esistente sia un’impresa enorme in cui tuttavia credo fortemente. Per non contare più morti, ma solo danni riparabili in poco tempo. Niente più chiese interamente crollate. Comunità trasferite per breve tempo. Un’economia locale che riparte dopo pochi mesi. In questo diverso scenario, qualsiasi intervento economico di ricostruzione diventerebbe più facile e attuabile da diversi attori, senza chiedere più nulla al cittadino che ha già fatto prima la sua parte.

Naturalmente lo speriamo; ti chiedo che cosa è necessario, a tuo parere, per incentivare l’utilizzo del “Sismabonus”, sempre che le risorse dello Stato siano sufficienti: Ti chiedo anche se, a parer tuo, fra Sismabonus, estensione della normativa sismica a tutto il territorio, aumento delle competenze ecc. il rischio sismico del nostro paese è minore o no rispetto, ad esempio, a 30 anni fa.

Per incentivare l’utilizzo del Sismabonus a mio avviso è necessaria molta informazione da dare ai cittadini, in modo da sensibilizzarli riguardo al rischio e contestualmente offrire loro valide soluzioni tecniche di intervento. Ritengo che se ci fosse un incentivo iniziale per la sola valutazione della vulnerabilità, magari da rendere obbligatorio per accedere alle detrazioni fiscali dei successivi lavori sulla casa, sarebbe già un’occasione importante per discutere insieme al cittadino dei risultati di analisi sulla propria abitazione e quindi renderlo sensibile al tema. Poi deciderà lui (ci auguriamo di sì) se proseguire con gli incentivi e i relativi interventi del Sismabonus. Riguardo la progettazione ed esecuzione di importanti opere di consolidamento strutturale, ribadisco che solamente un tecnico esperto in ingegneria sismica e ditte specializzate possono offrire le adeguate competenze affinché questi interventi siano realizzati in modo efficace.
La normativa tecnica attuale è molto stringente e ci sta già garantendo nuovi edifici più sicuri. Ma, come ripetuto, resta un immenso patrimonio edilizio esistente che rappresenta la maggior parte della vulnerabilità collettiva. Qui sarà il Sismabonus, promosso dalla voglia dei cittadini di costruirsi un nido familiare più sicuro, a ridurre la differenza di sicurezza tra nuove costruzioni e quelle esistenti.

Nota. Un aggiornamento a questo colloqui è disponibile qui

Sismabonus, un aggiornamento (colloquio con Alessandro Grazzini)

 

 

 

Norme tecniche per le costruzioni, modelli di pericolosità sismica e sicurezza degli edifici (colloquio con Antonio Occhiuzzi)

Anche se l’interesse maggiore di questi tempi è ovviamente per l’emergenza Covid, abbiamo ritenuto utile proporre una interessante analisi sul problema della sicurezza sismica degli edifici in relazione alle norme tecniche e ai modelli di pericolosità sismica.

Antonio Occhiuzzi, napoletano e tifoso del Napoli, è professore di Tecnica delle Costruzioni presso l’Università Parthenope. E’ laureato in ingegneria a Napoli e al MIT di Boston, ha un dottorato di ricerca in ingegneria delle strutture, materia cui si dedica da sempre.
Dal 2014 dirige l’Istituto per le Tecnologie della Costruzione (ITC), ossia la struttura del CNR che si occupa di costruzioni, con sedi a Milano, Padova, L’Aquila, Bari e Napoli.

Caro Antonio, tempo fa avevi commentato un mio post di risposta a un articolo dell’Espresso in cui veniva riproposta, come avviene periodicamente, la questione del superamento dei valori di progetto in occasione dei terremoti recenti e, di conseguenza, la presunta fallacia dei modelli di pericolosità e delle normative basate su di essi, quasi che entrambi fossero responsabili dei crolli e delle vittime. https://terremotiegrandirischi.com/2019/08/27/la-colpa-e-dei-modelli-di-pericolosita-sismica-di-massimiliano-stucchi/

Poichè in questa problematica si intrecciano aspetti sismologici e ingegneristici, ti ho invitato a approfondire la tematica.

Caro Max, l’avevo commentato perché ero assolutamente d’accordo con te. L’articolo dell’Espresso, rivolto al grande pubblico, risulta ingannevole per il non addetto ai lavori perché vengono mescolate considerazioni ragionevoli a clamorose inesattezze. Il giornalista si basa su di un’intervista a un geofisico, la figura professionale più credibile per studiare i fenomeni fisici del nostro pianeta: tuttavia, quando poi si passa agli effetti di tali fenomeni sulle costruzioni, il geofisico diventa, come lo sarebbe un medico o un letterato, un incompetente, perché si “entra” nei temi dell’ingegneria strutturale e, in particolare, di quella antisismica. Temi che non fanno parte degli studi e delle esperienze di geologi, fisici, medici e letterati (tra i tanti).

Le mappe, o meglio I modelli, di pericolosità sismica vengono compilati – nella maggior parte delle nazioni e anche dei progetti internazionali – secondo un approccio probabilistico, poiché questo viene “richiesto” dagli utilizzatori dei modelli stessi, ovvero dagli ingegneri progettisti. Ci puoi spiegare perché?

La progettazione strutturale e antisismica è, in tutto il mondo evoluto, basata su concetti probabilistici, anche per quanto concerne le azioni, incluse quelle sismiche. E questo approccio non è in discussione nella comunità mondiale dell’ingegneria strutturale (e antisismica). Il motivo, che spesso sfugge a chi non è del mestiere, è che la progettazione strutturale è dominata dalle incertezze: incertezze nella definizione delle azioni, sui modelli utilizzati, sulle resistenze dei materiali. Per tale motivo, la progettazione strutturale è convenzionale: nessuno al mondo pensa che nei solai di abitazione ci sia un carico variabile uniformemente distribuito pari a 2 kN/mq, che sarebbe a dire che in ogni stanza della casa c’è un allagamento con l’acqua alta 20 cm. Tuttavia, praticamente tutte le case del mondo sono progettate secondo questo tipo di ipotesi, per la quale gli effetti dei carichi che possono realmente interessare gli ambienti di una casa sono probabilisticamente minori di quelli corrispondenti a quella specie di “piscina” di cui parlavo prima. L’approccio probabilistico cerca di coniugare accuratezza e fattibilità operativa: in alternativa, ad esempio, un progettista dovrebbe prevedere, nell’ambito di un soggiorno, quale possa mai essere la disposizione dell’arredo e la posizione degli occupanti, eseguire i calcoli e imporre di non spostare divani, tavoli e pianoforte e di sedersi sempre tutti allo stesso posto. Sarebbe la “maximum credible furniture position”, concetto analogo a quello di “maximum credible earthquake” descritto nell’articolo dell’Espresso. In entrambi i casi, inutilizzabile per l’ingegneria antisismica: ti assicuro che prima o poi il pianoforte lo spostano e che il prossimo terremoto che arriva in un’area avrà caratteristiche che ai fini della sicurezza delle costruzioni saranno differenti da quelle previste: occorre progettare senza avere la presunzione di “sapere tutto”, ma gestendo “probabilisticamente” le incertezze.

Per inciso, è corretto dire che le azioni proposte dalla normativa rappresentano un valore minimo, obbligatorio, ma che se un proprietario decide di adottare valori superiori per ottenere una sicurezza maggiore è libero di farlo?

E’ corretto. Il “minimo obbligatorio” è frutto di un compromesso tra esigenze diverse e “contrastanti”. Nell’ambito delle costruzioni, due esigenze contrastanti sono la “resistenza al crollo” e il “danneggiamento delle componenti non strutturali”. Aumentare l’intensità delle azioni corrisponde a costruzioni più resistenti e più rigide: questo corrisponde ad accelerazioni ai piani più elevate e, di conseguenza, a danneggiamenti più elevati per partizioni esterne e interne, impianti, finiture, etc. Se diminuisce l’intensità delle azioni attese, la costruzione è meno resistente, meno rigida e durante un terremoto subisce accelerazioni ai piani più modeste: meno danni, ma aumenta il “rischio crollo” (per semplificare). Il “punto di equilibrio”, basato sull’esperienza, è – per ora – quel 10% in 50 anni.
Se però io avessi un minuto da dedicare a ciascun proprietario di casa, lo utilizzerei dicendogli di non fare soppalchi abusivi, non nascondere i radiatori realizzando nicchie nelle murature portanti, non tagliare o comunque danneggiare travi e pilastri in calcestruzzo armato per fare spazio agli impianti tecnologici, di risparmiare e poi spendere qualche soldo per le verifiche strutturali e per il consolidamento strutturale. Il minuto sarebbe finito e non sarei pentito di non avere avuto il tempo di parlargli dell’ultimo dei problemi, ossia la modifica di dettaglio dell’intensità dell’azione sismica rispetto a una definizione che va già sostanzialmente bene.

E’ però vero che in alcuni paesi si cominciano a adottare azioni con probabilità di superamento più basse, così come avviene, per inciso, per opere pubbliche di particolare rilevanza. E qualcuno spinge per adottare il massimo terremoto atteso, sempre ammesso che lo si sappia valutare.

Mi perdonerai la franchezza, ma questo è un falso problema. Ti racconto un aneddoto. Alla fine del 2008 partecipai alla progettazione di un nuovo padiglione dell’ospedale di Fivizzano, in Garfagnana. Proposi subito l’adozione delle allora recenti NTC 2008: tutti, committente, tecnici, persino i colleghi del locale Genio Civile mi dicevano “siamo nel periodo transitorio, perché non vai con le norme del 1996?”. Insistetti, e l’edificio fu realizzato secondo le NTC 2008, forse uno dei primi in Italia, all’inizio del 2009, prima del terremoto di L’Aquila. Nel giugno 2013 accadde un terremoto, non un evento epocale (M=5.1), ma con epicentro molto prossimo a Fivizzano. Nel plesso ospedaliero c’è una stazione accelerometrica della rete nazionale: guardando PGA e spettro di risposta in accelerazione ricavati dal segnale registrato, mi accorsi che si trovavano ben al di sopra dello spettro di progetto allo SLD e al di sotto di quello allo SLU. Un sopralluogo permise di constatare che gli unici danni rilevati nel nuovo padiglione riguardarono due piccole lesioni nei componenti non strutturali di partizione esterna. La riparazione durò mezza giornata. Voglio dire che mentre ci sono testimonianze empiriche, come quella che ti ho raccontato, del fatto che la scelta di utilizzare una certa probabilità di superamento in un dato periodo “ha funzionato”, non esiste alcun caso reale, per edifici progettati e realizzati secondo le norme attuali (dalle NTC 2008 in poi), che mostri che le scelte alla base di tali normative sono sbagliate.

Uno degli argomenti più usati – strumentalmente – per attaccare modelli di pericolosità e normativa sismica basata su di essi è l’avvenuto superamento dei valori di progetto in occasione di terremoti recenti. Premesso che, a parte gli svarioni che vengono commessi nell’effettuare questi confronti,  i valori adottati per la progettazione sono “superabili” per definizione se si accetta un x% di probabilità di superamento in x anni, l’idea che viene trasmessa al pubblico è che se le azioni sismiche superano quelle di progetto la costruzione crolla. E’ così?

 In generale non è così. Come dicevamo prima, l’approccio attuale dell’ingegneria antisismica mondiale è fondato su basi probabilistiche. Questo significa che l’impostazione normativa prevede esplicitamente che non sia nota, ad esempio, l’entità dell’azione sismica (ovviamente in un certo, ragionevole intervallo). Per esemplificare, se la PGA di progetto allo Stato Limite Ultimo (SLU) è, per un dato sito, pari a 0,27g, puoi star sicuro che un edificio correttamente progettato avrà il comportamento previsto anche per valori superiori della PGA. Naturalmente, se impattiamo un asteroide e il moto del suolo arriva a punte di accelerazione molto maggiori, ad esempio 10 volte maggiori, questo discorso non vale più. Ma per una data area, l’attuale impostazione progettuale tiene in considerazione il fatto che le azioni possano essere ragionevolmente superiori a quelle di progetto senza che la sicurezza della costruzione ne risenta significativamente. A tale risultato si perviene per due strade principali.
La prima concerne i coefficienti di sicurezza (parziali) previsti dalle norme vigenti, che riguardano le azioni, le resistenze e i modelli di valutazione. La questione è un po’ sottile, per addetti ai lavori: i coefficienti parziali sono parzialmente esplicitati nelle norme, ma sono spesso invisibili ai “non specialisti” e pertanto applicati spesso senza che progettisti ed esecutori ne abbiano esatta contezza. Semplificando in maniera estrema, e perdendo quindi in rigore scientifico, posso dirti che l’effetto globale dei coefficienti parziali (espliciti e nascosti) comporta per una costruzione in calcestruzzo armato un margine di sicurezza compreso tra 2,5 e 3, che aumenta nel caso di meccanismi di rottura fragile (di nuovo, roba da super-specialisti). Questo significa che azioni, modelli e resistenze previste in progetto possono essere sbagliati – complessivamente – fino al 150-200% prima di causare un crollo. Può sembrare tanto, ma al momento in tutto il mondo questa è più o meno la riserva di resistenza che viene ritenuta necessaria.
La seconda è il concetto di duttilità. Secondo le attuali norme di progettazione e di esecuzione, gli organismi strutturali sono in grado di resistere ad azioni maggiori di quelle previste in progetto utilizzando meccanismi di duttilità e di dissipazione energetica e purché non insorgano meccanismi di rottura fragile (accuratamente evitati mediante l’applicazione di coefficienti parziali di modello e del concetto di “gerarchia delle resistenze”). Aggiungo, inoltre, che le costruzioni moderne dispongono di “riserve di resistenza” aggiuntive delle quali non si tiene conto nella progettazione, ma che comunque esistono.
Per quanto detto, quindi, la tesi che accelerazioni sismiche effettive alla base superiori a quelle convenzionali di progetto (di quanto: 10, 20, 50%?) siano in qualche modo un problema che riguarda la sicurezza delle costruzioni è priva di qualsiasi riscontro nel mondo dell’ingegneria antisismica.

Tornando al problema principale, possiamo affermare che i crolli che riscontriamo in occasione di molti terremoti non sono dovuti al superamento delle azioni di progetto? Sei a conoscenza di casi in cui questo si sia verificato in modo dimostrato?

Le costruzioni realizzate a partire delle recenti normative antisismiche (dall’Ordinanza PCM del 2003 in poi) hanno un grado di sicurezza nei riguardi delle azioni sismiche molto elevato (la sicurezza “assoluta” non esiste!). Quelle che hanno “sofferto” e soffriranno per i terremoti sono sostanzialmente costruzioni non realizzate secondo criteri antisismici o oggetto di manomissioni operate con poco scrupolo. Sintetizzando, fino ad oggi hanno fatto più morti i soppalchi e le aperture abusive che la PGA.

Qui ovviamente si apre la questione del come mai questo avvenga. Che crollino alcune costruzioni non realizzate secondo criteri antisismici, ad esempio prima che il relativo Comune venisse inserito nelle zone sismiche, ci può stare: tuttavia ci sono fior di costruzioni di quel tipo che hanno superato in maniera decente la prova del terremoto. Come mai avviene questo?

L’ingegneria antisismica è una disciplina relativamente moderna. Fino agli anni ’80 è rimasta confinata nei dipartimenti (allora erano istituti) universitari, la prima generazione di laureati in ingegneria civile con l’esame di costruzioni in zona sismica nel libretto è apparsa sul mercato del lavoro nella decade a cavallo del nuovo millennio. I crolli registrati in Italia in corrispondenza dei terremoti sono riferiti, nella stragrande maggioranza dei casi, a costruzioni in muratura non ingegnerizzate o a edifici in calcestruzzo armato non progettati e realizzati secondo criteri antisismici. Anche per questo tipo di costruzioni, però, esiste una capacità, ancorché limitata, di resistere alle azioni sismiche. Una muratura regolare, ben conservata, con aperture geometricamente ordinate può essere in grado di sostenere azioni orizzontali significative anche se chi l’ha realizzata non lo sapeva.

Anche senza tirare in ballo probabilità di superamento, argomento sempre ostico e scivoloso ad ogni semplificazione, si può dire che il modello di pericolosità ha fornito alcuni “terremoti” di riferimento di entità crescente, per ogni località Italiana. Le NTC hanno deciso di usare (per civile abitazione) due di questi, richiedendo ai progettisti di superarne uno senza danni e l’altro senza crolli.  Alla luce delle esperienze degli ultimi anni, ritieni ancora questa assegnazione la migliore (per lo Stato e per il proprietario) o c’è spazio per un passaggio dall’approccio “salva vite” a quello “limitazione del danno”, per avere in futuro crateri ancora più piccoli e meno danneggiati?”

Caro Max, devo dire che ancora una volta siamo “fuori fuoco”. Le vite perdute e i danni occorsi durante i terremoti italiani delle ultime decadi sono dovuti a due diversi fattori, tra i quali certamente non c’è la scelta operata in sede di NTC. Il primo è che morti e danni hanno riguardato costruzioni precedenti all’attuale assetto normativo. Sotto questo profilo è fuorviante associare i danni e le tragedie che osserviamo al telegiornale con l’attuale norma tecnica. Il secondo è che morti e danni hanno riguardato molto spesso costruzioni malamente manipolate e per questo indebolite nei riguardi della sicurezza strutturale e antisismica (ricordi la “casa dello studente” di L’Aquila? O le foto di Amatrice con le murature portanti “tagliate” in corrispondenza di improbabili soppalchi?). Ovviamente, tutto è migliorabile, anche le mappe di pericolosità e l’uso che se ne fa nell’ingegneria antisismica: tuttavia, questi aspetti oggi sono molto meno importanti del dramma di avere in tutto il Paese una maggioranza di costruzioni irrispettose di qualsiasi criterio antisismico anche minimo.

A volte, perdonami la franchezza, mi sembra che il dibattito scada nel paradossale osservando che una diversa modellazione delle azioni sismiche porta a oscillare il rapporto tra capacità e domanda (ossia il livello di sicurezza antisismica) tra 0,9 e 1,1 mentre la stragrande maggioranza delle costruzioni italiane delle zone sismiche 1 e 2, ivi incluse scuole, tribunali, edifici sportivi e case, ha valori prossimi a 0,3, offrendo quindi una sicurezza strutturale pari a circa un terzo di quella che viene richiesta oggi alle nuove costruzioni!

Scuole e sicurezza sismica (colloquio con Edoardo Cosenza)

Il problema della sicurezza sismica delle scuole è molto grande, in Italia come in altri paesi. Periodicamente si leggono sui media rapporti più o meno generali, ma sempre abbastanza negativi, sullo stato delle scuole in Italia. A volte il problema finisce davanti al giudice, nelle cui sentenze si discetta di “indice di sicurezza”, di probabilità di accadimento di terremoti e anche della loro prevedibilità.
Per cercare di fare il punto sulla questione, a beneficio dei non-ingegneri, abbiamo rivolto alcune domande a Edoardo Cosenza, professore di Tecnica delle Costruzioni nell’Università di Napoli Federico II, membro di numerosi Comitati che operano per la definizione delle normative e che è stato anche Assessore ai Lavori Pubblici della Regione Campania (https://www.docenti.unina.it/webdocenti-be/allegati/contenuti/1440218).
Da qualche tempo è molto attivo sui “social”, dove contribuisce egregiamente alla spiegazione degli aspetti ingegneristici ai non informati.
(Nota: le domande sono state formulate con la collaborazione di Carlo Fontana).

Il problema della sicurezza sismica delle scuole è molto sentito in Italia, forse anche a seguito del crollo della scuola di San Giuliano di Puglia nel quale, nel 2002, morirono 26 fra studenti e insegnanti. La situazione è davvero grave, nel suo complesso? Quali sono le ragioni?

La situazione delle scuole non è diversa da quella di tutti gli edifici pubblici o anche degli edifici privati. Risentono di classificazioni sismiche del passato molto parziali, direi che solo dopo l’inizio degli anni ’80 si è avuta una seria classificazione della pericolosità, e pertanto tutto ciò che è stato costruito prima (e quindi una enorme percentuale delle costruzioni) non è stata progettata con criteri sismici. Alcuni investimenti per aumentare la sicurezza delle scuole sono nel frattempo stati fatti, a partire soprattutto dal 2003, ed altro ancora assolutamente va fatto. Ma francamente credo che le scuole siano mediamente più sicure degli edifici privati e spesso ho assistito a chiusure di scuole con genitori che molto probabilmente hanno portato i figli a casa propria, in edifici paradossalmente meno sicuri della scuola stessa.

E’ solo un problema di classificazione delle zone sismiche o anche di normativa tecnica?

Certamente anche di normativa tecnica. Va chiarito innanzitutto che la normativa tecnica riflette sempre le conoscenze del tempo: ad esempio  le automobili degli anni ’60 erano molto meno sicure di quelle di oggi, perché non c’erano sistemi elettrici di frenatura, non c’era l’air bag, le autovetture erano molto pesanti ecc; e ciò vale per qualsiasi disciplina dell’ingegneria: si pensi agli impianti elettrici, alla sicurezza antincendio ecc. In perfetta continuità anche il comportamento sismico delle costruzioni era meno conosciuto. Gli avanzamenti più importanti, in tutto il mondo, compresa California o Giappone, sono stati fatti solo dalla fine degli anni ’70. Dunque un parte del problema, cioè che le costruzioni realizzate nelle poche zone classificate sismiche in Italia prima degli anni ‘ 80 sono state progettate con criteri “d’epoca” oggi superati, è certamente vera e connessa alla minore conoscenza del tempo. A questo si aggiunge purtroppo la scarsa propensione del Paese a introdurre novità: in realtà solo dopo il terremoto di San Giuliano di Puglia, con l’Ordinanza d Protezione Civile del 2003, scritta fra tante polemiche da un gruppo di professori di ci facevo parte anche io, si è data una scossa – è il caso di dire –  al sistema normativo. Il quadro normativo di fatto si è assestato solo nel 2009, dopo il terremoto di L’Aquila: purtroppo ci sono dovute essere delle grandi tragedie per convincere la comunità ad accettare le variazioni, dopo lunghissime discussioni. Adesso possiamo certamente dire che l’Italia ha una delle normative tecniche più avanzate del mondo. Ciò non toglie che la conoscenza tecnica evolve ed evolve sempre, non parliamo di scienze assolute ammesso che esistano, e dunque anche la normativa sismica certamente subirà ulteriori variazioni, anche significative, in futuro.

Sempre nel 2003, l’Ordinanza PCM 3274 introdusse, per la prima volta, “l’obbligo di procedere a verifica, da effettuarsi a cura dei proprietari” delle opere strategiche, con finalità di protezione civile, e di particolare rilevanza, quali scuole, ospedali, ecc. (Art. 2, comma 3)”. Il termine ultimo, inizialmente stabilito in 5 anni dall’emissione dell’ordinanza, è stato più volte prorogato fino al 2013. Erano esentate dall’obbligo di verifica “le opere progettate secondo le norme vigenti successivamente al 1984”, sempreché la classificazione sismica all’epoca della costruzione fosse coerente con quella della 3274/2003 (Art. 2, comma 5); in altre parole, se costruite secondo la normativa sismica post 1984.
Veniva dunque richiesta una verifica, ma senza obbligo d’intervento, anche se era previsto l’obbligo di programmazione degli interventi stessi. Come mai?

La previsione dei lavori, come osservato, doveva essere introdotta nei piani annuali e triennali dei lavori, che sono un obbligo di tutte le Amministrazioni Pubbliche. In altri termini era obbligatoria la programmazione dei lavori su base pluriennale da parte dei proprietari delle Scuole (per quelle pubbliche: Comuni e Provincie). L’obbligo di intervento non potette essere inserito, perché si sarebbe dovuta anche indicare la fonte finanziaria che era difficile da quantificare e soprattutto molto difficile da trovare.

È disponibile un sommario dei risultati conseguiti? E come va intesa l’eventuale inadempienza all’ “obbligo” di legge di verifica e di programmazione degli interventi?

Purtroppo non dispongo di questi dati. Ritengo che a livello centrale debbano esistere, forse al MIUR o al DPC; oppure nelle strutture di missione di Pazzo Chigi come Italia Sicura o Casa Italia. Però non ne sono a conoscenza.

Saltando alcuni passaggi (NTC2008, Circolare applicativa del Ministero delle Infrastrutture n.617 del 2009, Direttiva PCM del 2011 sulla valutazione e riduzione del rischio sismico del patrimonio culturale, ecc.), le nuove Norme Tecniche (NTC2018) hanno introdotto alcune novità, fra cui la definizione del livello di sicurezza (indice di sicurezza) come rapporto fra capacità (azione sismica massima sopportabile dalla struttura) e l’azione sismica massima utilizzabile nel progetto di una struttura nuova in quella località. Ci puoi spiegare meglio che cosa c’è dietro questa definizione, e che cosa significa “sopportabile”?

Si è introdotto un semplice indice numerico, di immediato e comprensibile significato. Per “azione sismica massima sopportabile” si intende l’azione sismica che fa pervenire alla eguaglianza fra entità dell’azione sismica la Resistenza degli elementi strutturali più sollecitati.
L’indice è dunque un numero che risulta almeno pari a 1, in quanto in tal caso è certamente sopportabile l’azione sismica prevista dalla normativa, per una costruzione progettata con le nuove norme tecniche; quindi è da considerarsi “sicura”, nell’ambito della sicurezza convenzionale che noi tecnici valutiamo con i metodi normativi. Ed invece è molto frequente che sia inferiore all’unità, salvo particolarissimi casi di sovradimensionamento, per le costruzioni esistenti. Ci tengo a sottolineare che parliamo di sicurezza convenzionale, dovrei dire più precisamente “probabilistica”, in quanto oramai è anche comunemente accettato che il rischio zero non esiste; cioè purtroppo, stante la forte aleatorietà, è sempre possibile che ci siano azioni più elevate di quelle di progetto o resistenze minori di quelle di progetto; si cerca però di assicurare valori di rischio piccoli e uniformi per tutti i cittadini. Si potrebbe anche puntare ai massimi valori delle azioni sismiche che si deducono dagli studi di pericolosità sismica nazionale, ma ciò sarebbe, a parere mio e di molti altri ricercatori, contrario al principio di assicurare uno stesso rischio in tutto il paese e porterebbe a costi delle costruzioni talvolta inutilmente elevatissimi. In pratica nessun paese al mondo sceglie, almeno attualmente, questa soluzione normativa.

Le NTC2018 stabiliscono dunque che sia accettabile che l’indice possa essere inferiore a 1. Che cosa vuol dire in pratica? Viene spontaneo pensare che, se un edificio scolastico ha un indice molto inferiore a 1, debba essere considerato poco sicuro.

Il principio è che, per una costruzione esistente, essendo visibile e disponibile, si può constatare direttamente la geometria effettiva, i carichi permanenti realmente esistenti, la quantità e la resistenza dei materiali; inoltre ha già superato la fase iniziale della vita in cui si manifesta quello che in sintesi si chiama “mortalità infantile”. Invece in una costruzione da progettare i calcoli strutturali si fanno in modo virtuale, ovviamente senza che esista la costruzione stessa. Dunque il rischio di una costruzione solo progettata è più alto: si pensi ai grandi errori progettuali o realizzativi che poi possono avere conseguenze tragiche all’inizio della vita della costruzione; o anche carichi permanenti più grandi perché si sono aumentate le dimensioni in cantiere o si sono messi elementi non strutturali, pavimenti ed altro più pesanti di quelli di progetto. Dunque ciò porta ad affermare che se la costruzione già esiste e gli interventi che si progettano non comportano stravolgimenti della concezione strutturale, a parità di rischio (ovvero di sicurezza), si possono usare coefficienti più bassi, data la minore aleatorietà conseguente. E quindi, dal punto di vista meramente numerico, pervenire a un indice minore di 1 e dell’ordine di 0,8.
Certamente poi fa parte della civiltà di una nazione, nell’ambito di un problema così sensibile e grave come le scuole che raccolgono contemporaneamente centinaia di bambini, non consentire valori di tale indice troppo basso e cioè, in modo del tutto equivalente, probabilità di collasso troppo elevate.

Essendo l’indice un rapporto tra capacità e domanda, entrambe affette da incertezze, si sono diffuse varie “letture”, fra cui le seguenti:

1) “L’indice di sicurezza è un parametro da usarsi solo in relativo (per mettere in graduatoria di priorità gli interventi) non in assoluto, non rappresentando la vulnerabilità dell’edificio”.
2) “Non trattandosi un indice ‘certo’, non può certificare alcuno stato di rischio imminente, con tutto quello che ne consegue per l’utilizzabilità della struttura”.

Consideri corrette queste letture?

L’intera teoria della sicurezza, in qualunque branca dell’ingegneria, è caratterizzata da fenomeni aleatori: i terremoti sono certamente l’esempio più evidente. Anzi qualunque azione della nostra vita lo è. I nostri indici sintetizzano metodologie convenzionali e livelli di probabilità e di rischio accettati socialmente dai paesi più evoluti, di tutte le parti del mondo. Dire che possa esistere un indice “certo” è assolutamente fuori da qualsiasi realtà scientifica, non solo ingegneristica. Le verifiche che si fanno nelle costruzioni sono il meglio che la tecnica posso fare, ma mai e in nessun caso portano a previsioni deterministiche. D’altra parte le incertezze insite in qualsiasi problema di ingegneria sono trattate in modo scientifico, con le regole del calcolo della probabilità, ed è questo il massimo che si può fare. Chiedere che si facciano calcoli o si definiscano indici “certi” equivale a dire che si può fare una previsione metereologica “certa”: del tutto impossibile concettualmente.

Forse vale la pena chiarire al pubblico che nemmeno per un edificio (di qualsiasi genere) con indice = 1 si può affermare che non subirà alcun danno in caso di terremoto, giusto?

Assolutamente vero. C’è sempre una probabilità finita che l’azione sismica sia più grande di quella scelta dalle norme tecniche e dalla classificazione sismica e che le resistenze della costruzione siano minori di quelle considerate. In altri termini il rischio zero non esiste.

Esiste un inventario degli indici di sicurezza per le scuole italiane? Che tipo di operazioni è necessario compiere per determinarlo? Che tipo di cogenza hanno le NTC2018 in questo senso?

No, a mia conoscenza non esiste. Ritengo che il MIUR gradualmente lo stia costruendo. Per costruirlo e quindi per avere l’indice di sicurezza di ogni singola scuola, si devono fare rilievi e verifiche geometriche, prove sui materiali, esami dei progetti se esistenti e infine calcoli strutturali; tutto ciò a costi. La Norma Tecnica e la relativa Circolare indicano come fare le valutazioni/calcoli ingegneristici, ma un documento normativo non può porre obblighi di spesa pubblica. E ciò sia per il basso rango di norma (è un Decreto Interministeriale, ben al di sotto di un Decreto Presidenziale o di una Legge Parlamentare), sia perché l’obbligo implica spese e quindi reperimento di fondi.

La normativa non fissa un valore minimo dell’indice al di sotto del quale è necessario dismettere l’edificio ed eventualmente adeguarlo. Perché?

Non può indicarlo, è necessariamente delegato al proprietario. La norma indica “come” valutare”; non altro, per i motivi già citati in precedenza.

L’assenza di chiarezza relativamente al punto precedente ha fatto sì che si siano determinati dei contenziosi che hanno finito per essere risolti dalla magistratura, quali il caso di Roccastrada (Grosseto) con indice = 0.985 e Serramazzoni (Modena), con indice = 0.26, che – come altre volte – ha dovuto arrampicarsi su vetri per uscire dall’impasse. Ad esempio, nel caso di Serramazzoni la Cassazione ha interpretato, in sintonia con le NTC, l’incertezza insita nella determinazione del valore dell’indice come insufficiente per un obbligo di azioni immediate (“L’immobile pubblico in questione, pur astrattamente vulnerabile in caso di terremoto, è munito di agibilità …”). Si deve sottolineare l’espressione “astrattamente vulnerabile”, e il permanere della convinzione – molto diffusa soprattutto nel post-terremoto – che “agibile” significhi senza rischio…..
Che ne pensi?

Penso che il rapporto fra pensiero legale e pensiero ingegneristico (direi scientifico più in generale) è molto lontano dal convergere. Spesso in Magistratura si intendono come deterministiche realtà che invece sono probabilistiche. 0.985 è l’indice più alto che io abbia mai sentito, tanto che potrei addirittura dubitare del calcolo. Fra l’altro arrotondato a una sola cifra decimale, dopo la virgola, diventa 1,0 ed è certamente impossibile che il tecnico che ha fatto la valutazione abbia valutazioni cosi precise da potere affermare che le altre cifre decimali siano corrette. E poi mi chiedo: i magistrati conoscono l’indice di sicurezza dell’edificio in cui hanno scritto la sentenza? E le mamme conoscono l’indice di sicurezza della casa dove poi hanno riportato i bambini? E ancora una volta. Il rischio zero non esiste. Prima che questa intervista esca, potrei essere colpito da un fulmine o da una meteorite, qualcuno può escluderlo?

A oggi, dopo San Giuliano di Puglia (2002), ma anche dopo la Casa dello Studente di L’Aquila (2009), dopo la scuola di Amatrice (2016) e dopo la constatazione che occorre – caso per caso – una sentenza di un tribunale, la sensazione degli utenti è che l’attuale impianto normativo non offra certezze.
Evidentemente resta da fare molto, sia sul piano normativo che su quello operativo. Non va peraltro dimenticato che gli utenti spesso pretendono che le scuole abbiano un indice di sicurezza superiore a quello di molti degli edifici in cui abitano gli studenti, che vi trascorrono molto più tempo che a scuola.
Che prospettive di miglioramento ci sono, secondo te?

Nessuna norma di nessun settore, elettrico, automobilistico, trasportistico (auto, treni, auto) ecc. può garantire certezze. Le mie spiegazioni sulla questione le ho date. E sulla questione della sicurezza relativa della propria abitazione, della strada o della metropolitana che si prende per andare a scuole, dei bar e locali pubblici in cui si entra magari ogni giorno, è molto rilevante e lungi dall’essere risolta. Qualcuno conosce il rischio che si assume entrando in un certo museo, chiesa, cinema, ristorante, bar, albergo, stadio: certamente no. La sicurezza deve aumentare per qualsiasi luogo utilizzato da persone, sempre però nella certezza che il rischio può diminuire ma mai azzerarsi.

 

 

La vulnerabilità dimenticata (colloquio con Gianluca Valensise)

Gianluca Valensise, del Dipartimento Terremoti, INGV, Roma, è sismologo di formazione geologica, dirigente di ricerca dell’INGV, è autore di numerosi studi sulle faglie attive in Italia e in altri paesi. In particolare è il “fondatore” della banca dati delle sorgenti sismogenetiche italiane (DISS, Database of Individual Seismogenic Sources: http://diss.rm.ingv.it/diss/).  Ha dedicato oltre 30 anni della sua carriera a esplorare i rapporti tra tettonica attiva e sismicità storica, con l’obiettivo di fondere le osservazioni geologiche con l’evidenza disponibile sui grandi terremoti del passato. Di recente, con altri colleghi ha pubblicato un lavoro che propone una sorta di graduatoria di vulnerabilità dei comuni appenninici. Gli abbiamo chiesto di illustrarcelo.

Luca, tu sei un geologo del terremoto. Ti occupi di faglie attive, di sorgenti sismogenetiche, di terremoti del passato, di pericolosità sismica. Di recente ti sei avventurato, con altri colleghi, nel tema della vulnerabilità sismica del patrimonio edilizio italiano[1],[2]. Come mai questa scelta?

Premetto che io sono un ricercatore, ma mi sento anche un cittadino che si trova nella posizione di poter – e dover – fare qualcosa di immediatamente utile per il suo Paese. Ciò detto, credo che tutto sia nato dieci anni fa, con il terremoto dell’Aquila. Che l’estrema vulnerabilità del costruito fosse una delle cause degli esiti disastrosi di alcuni terremoti in effetti mi era apparso chiaro già da prima, se non altro per aver studiato gli effetti dei più forti terremoti italiani del ‘900; da quello del 1908 nello Stretto di Messina a quello dell’Irpinia del 1980, passando per la zona del Fucino, devastata dal terremoto del 1915.

Ma la storia in effetti inizia ancora prima, con il terremoto di San Giuliano di Puglia del 2002. Quel terremoto mostrò a tutti come nella difesa – o mancata difesa – dai terremoti si possono fare scelte così disastrose da vanificare sia la cultura materiale accumulata da chi abita nelle zone sismiche, sia l’avanzamento tecnologico in campo edilizio, che non riguarda solo le strutture in cemento armato ma anche quelle in muratura portante.

Il terremoto dell’Aquila del 2009 ha mostrato quasi un completo rovesciamento della situazione “normale”: se si escludono i beni culturali, per i quali valgono altre regole, il massimo numero di crolli e vittime si è registrato in edifici costruiti nel dopoguerra, mentre quelli di epoche precedenti – inclusi i palazzi settecenteschi della città storica – hanno risposto in modo complessivamente buono (questa differente performance include anche la scelta del sito, talora disastrosa nel caso di alcuni edifici recenti).

Sul caso dei terremoti del maggio 2012 in Emilia poi c’è poco da aggiungere. Il danno è stato dominato dai crolli nell’architettura ecclesiastica, probabilmente in buona misura inevitabili, e in quella industriale, che invece hanno rappresentato un fulmine a ciel sereno per tutti. Mi preme ricordare che i capannoni crollati erano stati costruiti senza considerare minimamente la possibilità di significative azioni sismiche laterali, che hanno quindi avuto buon gioco nel causare crolli apparentemente sproporzionati alla severità del terremoto stesso. Le norme precedenti non imponevano agli edifici di quella zona di cautelarsi contro i terremoti: cionondimeno, questo resta un dramma nel dramma, se si riflette sull’enorme sproporzione tra quanto poco sarebbe costato ridurre sostanzialmente la vulnerabilità di quei capannoni (a patto però che lo si fosse fatto in sede di costruzione), e il prezzo pagato da quelle comunità in termini di vite umane e di danni all’economia locale (e nazionale).
Infine, c’è il caso dei terremoti del 2016, che con l’ormai noto dualismo tra il centro storico di Amatrice, praticamente scomparso dalla carta geografica, e quello di Norcia, che seppure tra mille sofferenze ha avviato un percorso di rinascita, ha di fatto messo in moto la nostra ricerca.

La tesi di fondo che sostenete è che – forse semplifico io – la vulnerabilità sismica degli insediamenti aumenta con la distanza temporale dall’ultimo terremoto distruttivo. In un certo senso, sostenete, dopo un terremoto distruttivo si procede a riparazioni e ricostruzioni che diminuiscono la vulnerabilità complessiva; in seguito la memoria dell’evento sfuma e la vulnerabilità aumenta. E’ così?

La tesi in estrema sintesi è quella che hai tratteggiato, ma vanno fatte due premesse. La prima riguarda i dati utilizzati: per poter contare su dati omogenei e di buona qualità abbiamo scelto di analizzare solo l’Italia peninsulare, e in particolare la catena appenninica. La seconda ha invece carattere metodologico: nel nostro lavoro infatti si incontrano il dato storico, sotto forma di storia sismica di ogni singolo comune, e il dato geologico, che nell’ambito di un territorio vasto ci consente di isolare quei comuni che si trovano direttamente al di sopra delle grandi sorgenti sismogenetiche, e nelle quali quindi prima o poi ci si aspetta di raggiungere livelli di scuotimento elevati (si veda l’immagine qui sotto, cliccare per ingrandire). Si noti che i dati storici consentirebbero in molti casi di scendere anche al di sotto della scala comunale, ma per omogeneità di rappresentazione e per potersi rapportare con i dati ISTAT abbiamo deciso di riportare tutto al singolo comune.

Sorgenti sismogeniche composite (Composite Seismogenic Sources) tratte dal database DISS (DISS Working Group, 2018: http://diss.rm.ingv.it/diss/) e i più forti terremoti (Mw 5.8 e superiore) del catalogo CFTI5Med (Catalogo dei Forti Terremoti in Italia, GUIDOBONI et alii., 2018). Ogni sorgente rappresenta la proiezione in superficie della presumibile estensione della faglia a profondità sismogenica. Le sorgenti in giallo delineano il sistema di grande faglie estensionali che corrono lungo la cresta dell’Appennino e che sono state utilizzate per questa ricerca. Ogni sorgente è circondata da un buffer di 5 Km il cui ruolo è quello di tenere conto delle incertezze insite nella sua localizzazione esatta, e quindi della sua esatta distanza rispetto ai centri abitati che la sovrastano o la circondano (da Valensise et al., 2017: si veda la Nota 1).

È a partire dai comuni così selezionati  – 716 per l’intera Italia del centro-sud, dalla Toscana alla Calabria  – che abbiamo poi stimato l’attitudine di ogni comunità a sottovalutare il livello di pericolosità locale, e quindi ad abbassare fatalmente la guardia sul tema della vulnerabilità del costruito. Sarebbe stato inutile ragionare su tutti i comuni, inclusi quelli che sorgono distanti dalle grandi sorgenti sismogenetiche, perché una cosa è un edificio fatiscente in una zona scarsamente sismica, come è quasi tutto il versante tirrenico dell’Appennino, altro è se quello stesso edificio si trova ad Amatrice. Noi volevamo elaborare un “ranking” della vulnerabilità dimenticata dai cittadini e dai loro amministratori, e abbiamo messo in campo le migliori conoscenze geologiche, geodinamiche e storiche oggi disponibili – un patrimonio quasi unico al mondo – per raggiungere questo obiettivo. Un’ultima osservazione: i dati di ingresso sono congelati al pre-2016, quindi la graduatoria non tiene conto degli ultimi terremoti dell’Appennino centrale.

In questo modo avete stilato una sorta di graduatoria di vulnerabilità sismica degli insediamenti appenninici, basata sostanzialmente sulla distanza temporale dall’ultimo evento distruttivo. Ci puoi illustrare un poco questa graduatoria?

Abbiamo ordinato le nostre 716 località(si veda l’immagine qui sotto, cliccare per ingrandire)  in funzione della distanza nel tempo dall’ultimo scuotimento di VIII grado della scala MCS (Mercalli-Cancani-Sieberg): un livello di intensità che a nostro avviso fa da spartiacque tra la semplice riparazione di edifici vetusti e la necessità di demolirli e ricostruirli ex-novo, con una presumibile drastica riduzione della vulnerabilità.

Figure 2 Mappa ranking_200

Distribuzione dei 716 capoluoghi dei comuni (rappresentativi delle intere aree comunali) selezionati con la procedura descritta nel testo (da Valensise et al., 2017). Le aree bordate in giallo rappresentano la proiezione in superficie delle grandi sorgenti sismogeniche che corrono in cima all’Appennino (si veda anche la Figura 4). Sono mostrati:

• in viola: 38 comuni per i quali la storia riporta solo notizie di danni lievi;
in rosso: 315 comuni che nella nostra graduatoria corrispondono alle aree comunali che non hanno subito terremoti distruttivi dal 1861 (Unità d’Italia);
• in nero: 363 comuni ordinati secondo la distanza nel tempo dall’ultimo terremoto distruttivo, avvenuto dopo il 1861.

Il riferimento al 1861 è puramente convenzionale. L’anno 1861 rappresenta uno spartiacque storico imprescindibile anche per i terremoti, con effetti variabili caso per caso (si pensi solo alle efficaci norme antisismiche borboniche, abrogate con l’Unità d’Italia).

Le prime 38 località sono quelle che non hanno mai vissuto uno scuotimento del livello fissato: seguono quelle in cui quel livello è stato raggiunto o superato molti secoli fa, mentre in fondo troviamo le località che hanno subito i terremoti più recenti, e quindi sono state presumibilmente ricostruite con sistemi antisismici. Le nostre elaborazioni sono facilmente accessibili a chiunque attraverso un sito dedicato, che mostra la nostra graduatoria sia in forma tabellare che in mappa, e consente di esplorare la storia sismica di ciascun comune[3]. Gli unici altri parametri che mostriamo, senza per il momento utilizzarli, sono la popolazione residente e la percentuale di edifici ante-1918, entrambi da dati ISTAT. Per illustrare le implicazioni del nostro studio farò degli esempi tratti dalla graduatoria stessa.

Un caso eclatante è quello della media Valle del Serchio, con diverse località nella parte altissima della classifica, quella dei comuni che non hanno mai sperimentato un VIII grado nella storia: procedendo da NW verso SE si incontrano Gallicano (193°), Coreglia Antelminelli (192°), Borgo a Mozzano (31°), a Bagni di Lucca (32°), tutti centri tra i 4.000 e i 6.000 abitanti circa. Si salva solo Barga (595°), l’ameno borgo montano celebrato da Giovanni Pascoli, che è poi il centro principale della valle. Si nota facilmente che la posizione in graduatoria sale – dunque peggiora – muovendosi verso SE, ovvero allontanandosi dalla sorgente del terremoto del 1920 in Garfagnana, ovvero nell’alta Valle del Serchio. Non vi è dubbio che le due porzioni della valle siano simili, ma i dati sismotettonici suggeriscono che mentre la parte settentrionale ha subito il “suo” grande terremoto meno di un secolo fa, la faglia che si trova sotto la parte meridionale è storicamente silente. Secondo il CFTI5Med, nel 1920 Barga subì un VIII grado, e il terremoto “…danneggiò il 75% degli edifici, abitati per lo più da popolazione povera, causando il crollo totale di molte case…”. Sarà sufficiente questa ricostruzione a salvare Barga dal prossimo forte terremoto della Valle del Serchio? Le cose andranno probabilmente meglio che nei comuni più a valle, anche perché, se è vero che secondo l’ISTAT il 37% del patrimonio abitativo di Barga è pre-1918, ovvero ha oltre un secolo, questa quota di edificato è verosimilmente costituita da case che hanno resistito al terremoto del 1920: o perché costruite meglio, o perché costruite dove la risposta sismica è stata meno severa della media, o per una combinazione di queste due circostanze.

Un altro esempio che vorrei portare riguarda il confine calabro-lucano, tra le provincie di Potenza e Cosenza. Si tratta di un caso simile al precedente, ma decisamente più conclamato. Siamo infatti in uno dei pochi settori della catena appenninica che non hanno mai subito un forte terremoto in epoca storica, anche se la completezza del record sismico della zona non supera qualche secolo (con Emanuela Guidoboni nel 2000 scrivemmo un piccolo contributo proprio su questo tema[4]). L’area era stata già individuata come una possibile “lacuna sismica” dal sismologo giapponese Fusakichi Omori all’indomani di uno studio da lui condotto sui grandi terremoti dell’Italia peninsulare. Nella zona in questione ricadono Mormanno (CS, 29°), Rotonda (PZ, 30°), mai colpite da un forte terremoto, ma anche Viggianello (PZ, 178°), colpita da un VIII-IX grado nel terremoto del 26 gennaio 1708 – che sempre secondo il CFTI5Med “…danneggiò molto gravemente l’abitato causando estese distruzioni e numerose vittime…”. Il 25 ottobre del 2012 questa zona è stata colpita da un terremoto con Mw 5.3, che ha testato la solidità degli edifici ma soprattutto ha messo in moto un circolo virtuoso di riduzione della vulnerabilità dell’edificato: una circostanza molto locale, legata al verificarsi di un terremoto non distruttivo ma sufficiente a innescare una solida reazione delle istituzioni, e che potrebbe rappresentare una gradita eccezione a quanto previsto dal nostro ranking. Sicuramente però la lista delle località nelle quali la “memoria sismica” è stata ben coltivata include molti altri centri, soprattutto in Italia centrale e meridionale: ma dell’efficacia di questi comportamenti virtuosi riceveremo conferma solo dai terremoti prossimi venturi.

Il caso di Norcia sembra del tutto particolare. Il celebre regolamento edilizio dello Stato Pontificio (1859) sembra aver contribuito da allora a limitare i danni, anche nel caso nel terremoto del 1979. Viceversa, per motivi imperscrutabili, Norcia venne inserita in zona sismica solo nel 1962. Nel 2016 ebbe più danni fuori le mura che all’interno. Hai un’opinione?

Norcia è al 676° posto della nostra graduatoria, principalmente in virtù del terremoto del 1979, ma in precedenza aveva già subito effetti di VIII o superiore nel 1730, 1859 e 1879. Il caso di Norcia in effetti è decisamente unico. La “fortuna” di Norcia nei confronti dei terremoti – se mi si concede il termine, forse poco appropriato se solo pensiamo a quello che sta succedendo in questi mesi in città[5]  – passa soprattutto per due terremoti-simbolo, quelli del 1859 e del 1979, entrambi con magnitudo intorno a 5.8, e per un terremoto-richiamo, quello del 1997. Mi spiego meglio. A seguito del terremoto del 1859 il prelato Arcangelo Secchi e l’architetto Luigi Poletti furono i protagonisti di un’analisi molto accurata di ciò che era successo, accompagnata da raccomandazioni sulla ricostruzione raccolte nel famoso “Regolamento edilizio” approvato tra la fine del 1859 e la primavera del 1860. Fu così che il terremoto del 1979 trovò un patrimonio edilizio mediamente più robusto di quello delle località circostanti, anche se forse si era già in parte persa la lezione impartita dal terremoto di 120 anni prima. Dopo il 1979 Norcia fu comunque ricostruita con grande impegno, sia dei residenti che delle istituzioni. Il terremoto del 1997, il cui epicentro era tutto sommato abbastanza lontano da Norcia, fu l’occasione per un “richiamo” di quanto fatto dopo il 1979, come si fa con i vaccini. I nursini quindi – e lo dico con cognizione di causa poiché lì sono nati e cresciuti dei miei cugini materni – hanno il terremoto nel DNA.

Credo che il famoso Regolamento edilizio di Secchi e Poletti abbia giocato un ruolo determinante; un esempio per tutti, quello della Torre Civica, uscita miracolosamente quasi indenne dal terremoto del 30 ottobre 2016. Norcia dimostra che il peso della storia nella cultura locale può essere tale da compensare gli eventuali ritardi nell’introduzione e nell’applicazione di norme antisismiche. A Norcia la cultura locale non ha aspettato le norme moderne ma le ha precorse, anche grazie a Secchi e Poletti. Ricordiamo peraltro che da sempre in Italia le norme incidono solo sugli edifici nuovi e su quelli ristrutturati in maniera significativa, ma non impongono nulla sull’esistente: questo a mio avviso è uno dei grandi nodi irrisolti, nonché una fonte di equivoci e di aspettative mal riposte. Se vogliamo, il caso che citi – quello di un maggior danneggiamento al di fuori della cerchia muraria di Norcia rispetto al centro storico s.s. – è una paradossale conferma proprio del ruolo della “memoria storica” nel mitigare gli effetti dei terremoti. Anche qui al posto mio dovrebbe parlare un ingegnere, ma tenterò di azzardare delle ipotesi, in parte peraltro scontate.

Intanto va detto che il valore della “memoria storica” di Norcia e dei nursini vale principalmente per la “componente storica” dell’edificato. Una affermazione che sembra tautologica, ma in effetti a che storia sismica può far riferimento un condominio costruito negli anni ’80, diversissimo dallo stile costruttivo del centro della città, ma semmai simile a quello che si vede in tante periferie urbane d’Italia? Lo stile costruttivo è anche alla base della mia seconda ipotesi, che parte dall’evidenza che un edificio in muratura portante può difendersi anche molto bene dai terremoti, a patto però che sia ben costruito/ristrutturato, secondo le più efficaci pratiche in uso nelle diverse epoche. Ricordo che quello del 30 ottobre è stato un terremoto di magnitudo 6.5 localizzato proprio sotto al centro di Norcia: le accelerazioni osservate sono state molto significative, al punto da rendere veramente straordinaria la performance degli edifici in muratura. Nei condomini sorti all’esterno della cerchia muraria, invece – ma lo ripeto, si tratta dell’opinione di un geologo – ancora una volta si è visto che nei normali edifici in cemento armato la performance della struttura portante può essere anche molto diversa da quella delle tamponature e delle strutture accessorie. Questo significa che l’edificio difficilmente crolla, a meno di marchiani errori di progettazione, ma anche che i danni non strutturali possono risultare così onerosi da rendere conveniente demolire e ricostruire: un paradosso sul quale ritengo siano intervenute efficacemente le nuove Norme Tecniche per le Costruzioni, quantomeno per il futuro.

Avete avuto modo di discutere questo studio con qualche ingegnere sismico, o avete ricevuto qualche reazione da parte di quell’ambiente? Come ritenete che i vostri risultati possano essere utilizzati, e soprattutto da chi?

Abbiamo ricevuto parole di plauso e incoraggiamento sia da vari ingegneri a cui abbiamo sottoposto la prima versione del manoscritto, sia dal pubblico al quale abbiamo presentato lo studio nei consessi più disparati. Ma ci si ferma lì, perché altre reazioni – e mi riferisco soprattutto a quelle delle istituzioni – non ce ne sono state, almeno per ora. Abbiamo anche tentato di stabilire un rapporto con i vertici della Struttura di Missione Casa Italia, quando ancora era diretta dal Prof. Azzone, ma non c’è stata alcuna reazione. Evidentemente Casa Italia non condivide con noi la necessità di fissare presto dei criteri di priorità per gli interventi di mitigazione del rischio: interventi che comunque non sta attuando, se non nei dieci cantieri-simbolo che verranno aperti in altrettante città-simbolo.
Noi riteniamo che oggi la mitigazione dei terremoti debba coniugare degli ottimi presupposti scientifici –  e in Italia riteniamo di aver sia un ricco patrimonio di dati sulla sismicità, sia un ottimo expertise per utilizzarli al meglio – con un sano realismo per quel che riguarda come e dove investire le eventuali risorse che si rendessero disponibili per il miglioramento sismico. Riteniamo anche che il Sisma Bonus potrebbe essere uno strumento utile, ma solo a patto di rivedere drasticamente i criteri di assegnazione dei benefici offerti (oltre a renderlo più “allettante”, rivedendo i meccanismi di erogazione: ma su questo lascio la parola agli esperti di cose finanziarie). In particolare va assolutamente stilata una graduatoria di priorità tra i diversi comuni e i diversi aggregati di edifici, scegliendoli in base alla loro vulnerabilità presumibile – sulla base di ipotesi come quelle da noi formulate – o reale – sulla base di rilievi puntuali, ancorché speditivi.
Per avviare armonicamente questo processo è necessaria una solida cabina di regia, che a mio avviso dovrebbe includere ricercatori, rappresentanti degli ordini professionali coinvolti, funzionari dell’ISTAT, oltre a rappresentanze istituzionali di varia provenienza (DPC, MiSE, ANCI ecc.). Per oltre due anni ho pensato e sperato che questa cabina di regia potesse coincidere con le strutture di Casa Italia, ma oggi mi è chiaro che sbagliavo.

Infine – last but not least, come si direbbe nel mondo anglosassone – è necessario varare un approccio pluriennale alla mitigazione del rischio sismico, che almeno su un tema così importante abbatta l’endemica visione “a cinque anni” (quando va bene) che da sempre caratterizza i governi del Belpaese. Ma la capacità di pianificare efficacemente il futuro non rientra tra le tradizionali virtù italiche, e dunque su questo versante temo non si andrà molto lontano.
Come ricercatore so distinguere bene ciò che ha senso da ciò che potrebbe essere scritto solo in un libro dei sogni. Tuttavia – e con questo chiudo il cerchio da te aperto con la prima domanda – mi piacerebbe dedicare i prossimi anni di attività a battermi perché ci sia un cambio di rotta su come oggi si affrontano questi temi in Italia. Lo ritengo un dovere morale della mia generazione di sismologi, figlia delle immense – e certamente evitabili – catastrofi del Friuli e dell’Irpinia, e della successiva nascita di una Protezione Civile moderna ed efficace.


[1]  https://www.sciencedirect.com/science/article/pii/S2212420917302376?via%3Dihub(solo abstract: per scaricare l’articolo è necessario un abbonamento alla rivista)

[2] http://www.cngeologi.it/wp-content/uploads/2018/08/GTA01_2018_web.pdf (liberamente scaricabile)

[3] http://storing.ingv.it/cfti/cftilab/forgotten_vulnerability/#

[4] https://www.annalsofgeophysics.eu/index.php/annals/article/view/3672. L’articolo è liberamente accessibile.

[5] http://www.ansa.it/umbria/notizie/2019/04/19/continua-protesta-comitato-norcia_584b1669-91d1-4654-9563-504bdc31f3ba.html

The forgotten vulnerability (interview with Gianluca Valensise)


Gianluca Valensise, of the Earthquake Department of INGV, Rome, is a seismologist with a geological background, an INGV research manager, and the author of numerous studies on active faults in Italy and other countries. In particular he is the “founder” of Italy’s Database of Individual Seismogenic Sources (DISS, http://diss.rm.ingv.it/diss/). He has spent over 30 years of his career exploring the relationships between active tectonics and historical seismicity, with the goal of merging geological observations with the available evidence on the largest earthquakes of the past.
Recently, with other colleagues, he published a work that proposes a sort of vulnerability ranking of Apennines municipalities. We discuss it below.

Luca, you are an earthquake geologist. You deal with active faults, seismogenic sources, past earthquakes, seismic hazard. Recently, with other colleagues, you have ventured into the theme of seismic vulnerability of the Italian building heritage. How come this choice?

First of all let me recall that I am a researcher, but also a citizen who is in a position to be able – and having to – to do something immediately useful for his own country.
That said, I believe that it all started ten years ago, following the 2009 L’Aquila earthquake. That the extreme vulnerability of the built-up area was one of the causes of the disastrous results of some earthquakes had already become clear to me from before, if only for having studied the effects of the strongest Italian earthquakes of the ‘900; from that of 1908 in the Strait of Messina to that of Irpinia in 1980, passing through the area of Fucino, devastated by the earthquake of 1915.

But the story actually begins even earlier, with the earthquake of San Giuliano di Puglia in 2002. That earthquake showed everyone that some of the choices made in the defense – or lack of defense – from earthquakes can be so disastrous as to frustrate both the material culture accumulated by those who live in the seismic zones, both the technological advancements in the construction industry: these advancements concern not only reinforced concrete structures, but also those built with load-bearing masonry.
The 2009 L’Aquila earthquake showed almost a complete reversal of the “normal” situation: excluding cultural assets, for which other rules apply, the maximum number of collapses and victims was recorded in post-WWII buildings, while those of previous eras – including the eighteenth-century buildings of the historic city – overall responded quite satisfactorily (this different performance also includes the choice of the site, sometimes disastrous in the case of some recent buildings).

There is little to add on the case of the May 2012 earthquakes in Emilia. The damage was dominated by the collapses in ecclesiastical architecture – to a large extent inevitable – and in the industrial one, which instead represented a bolt from the blue for everyone. I would like to remind you that the collapsed warehouses had been built without considering the possibility of significant lateral seismic actions, which have therefore played a major role in causing collapses that are apparently disproportionate to the severity of the earthquake itself. The previous antiseismic code did not require buildings in that area to be earthquake-proof: nevertheless, this remains a tragedy in the tragedy, if we reflect on the enormous disproportion between how little it would have costed to substantially reduce the vulnerability of those industrial premises (provided, however, that the reinforcements had been planned ahead of construction), and the price paid by those communities in terms of human lives and damage to the local (and national) economy.
Finally, there is the case of the 2016, Central Italy earthquakes, and of the dualism between the historical center of Amatrice, that practically disappeared from the map, and that of Norcia, that has entered a path of rebirth, although this path is fraught with many difficulties. This dualism has spurred our research (1, 2).

The basic thesis that you support is that – perhaps I simplify – the seismic vulnerability of settlements increases with the temporal distance from the last destructive earthquake. In a sense, you argue, after a destructive earthquake, repairs and reconstructions are carried out which reduce the overall vulnerability; then the memory of the event fades out and the vulnerability increases. Is this so?

The thesis in extreme synthesis is the one you have outlined, but I must make two premises. The first concerns the data used: in order to rely on homogeneous and good quality data, we have chosen to analyze only peninsular Italy, and in particular the Apennines chain. The second one has instead a methodological character: in our work we use jointly the historical observations, in the form of the seismic history of each single municipality, and the geological observations, which within a vast territory allow us to isolate those municipalities that are directly located above the great seismogenic sources. As such these municipalities will experience strong ground shaking, sooner or later (see the image below). It should be noted that the historical data would in many cases allow to go even below the municipal scale, but in order to grant a homogeneous representation and to be able to relate to the ISTAT data we have decided to bring everything back to the single municipality.

Figure 1 CFTI-DISS_200

Composite Seismogenic Sources taken from the DISS database (DISS Working Group, 2018: http://diss.rm.ingv.it/diss/) and the strongest earthquakes (Mw 5.8 and larger) in the CFTI5Med catalog (Catalog of Strong Earthquakes in Italy, Guidoboni et al., 2018). Each source represents the surface projection of the fault at seismogenic depth. The sources in yellow outline the system of large extensional faults running along the crest of the Apennines and have been used for this research. Each source is surrounded by a 5 km buffer whose role is to take into account the uncertainties inherent in its exact location, and therefore its exact distance from the inhabited centers that surround it or lie above it (from Valensise et al., 2017: see Note 1).

It is from the municipalities so selected (see the figure above) – 716 for the whole of central and southern Italy, from Tuscany to Calabria – that we then ranked the attitude of each community to underestimate the level of local danger, and therefore to fatally lower the guard on the issue of building vulnerability. It would have been useless to consider all municipalities, including those that lie far from the large seismogenic sources, because one thing is a dilapidated building in a scarcely seismic area, such as most of the Tyrrhenian side of the Apennines, another is if that same building is located in Amatrice. We wanted to elaborate a “ranking” of the vulnerability forgotten by citizens and their administrators, and we have put in place the best geological, geodynamic and historical knowledge available today – an almost unique heritage in the world – to achieve this goal. One last observation: the data we used are frozen at pre-2016, so our ranking does not take into account the latest earthquakes in the central Apennines.

In this way you have drawn up a sort of seismic vulnerability ranking of the Apennine settlements, based essentially on the temporal distance from the last destructive event. Can you illustrate this ranking a little?

We have ordered our 716 locations (see figure below) as a function of distance over time since the last VIII intensity shaking (Mercalli-Cancani-Sieberg or MCS scale:): a level of intensity that we believe marks a boundary between the simple repair of old buildings and the need to demolish and rebuild them from scratch, with a presumably drastic reduction in vulnerability.

Figure 2 Mappa ranking_200

Distribution of the 716 municipalities (representative of the entire municipal areas) selected with the procedure described in the text (from Valensise et al., 2017). The areas outlined in yellow represent the surface projection of the large seismogenic sources that run along the crest of the Apennines. The map shows:
– in purple: 38 municipalities for which historical sources report only minor damage;
– in red: 315 municipalities that in our ranking correspond to the municipal areas that have not suffered destructive earthquakes since 1861 (the year of unification of Italy);
– in black: 363 municipalities ordered according to the distance in time from the latest destructive earthquake, which occurred after 1861.
The reference to 1861 is purely conventional. The year 1861 represents a historical watershed that is also essential for earthquakes, with variable effects on a case-by-case basis (just think of the very effective Bourbon seismic regulations, that were abolished following the Unity of Italy).

The first 38 localities are those that have never experienced a shaking of the set level: following are those where that level was reached or exceeded many centuries ago, while in the end we find the places that have suffered for the most recent earthquakes, and therefore have been presumably reconstructed with anti-seismic systems.
Our elaborations are easily accessible to anyone through a dedicated website, which shows our ranking both in table and on map, and allows to explore the seismic history of each municipality (3). The only other parameters we show, without using them for the moment, are the resident population and the percentage of pre-1918 buildings, both from ISTAT data.

To illustrate the implications of our study I will give examples taken from the ranking itself. A striking case is that of the Mid-Serchio Valley, with several localities in the highest part of the ranking, that collects the municipalities that have never experienced a VIII degree in history: going from NW to SE we find Gallicano (193°), Coreglia Antelminelli (192 °), Borgo a Mozzano (31°), at Bagni di Lucca (32 °), all centers around 4,000 to 6,000 inhabitants, all in the province of Lucca. Only Barga , the pleasant mountain village celebrated by Giovanni Pascoli that is also the main center of the area, is presumably safe (595°).

It is easy to see that the position in the ranking goes up – thus worsening – moving towards the SE, i.e. moving away from the source of the 1920 earthquake in Garfagnana, also known as upper Serchio Valley. There is no doubt that the two portions of the valley are similar, but the seismotectonic data suggests that while the northern part suffered its “great” earthquake less than a century ago, the fault beneath the southern part is historically silent. According to the CFTI5Med catalogue, in 1920 Barga suffered a VIII degree, and the earthquake “… damaged 75% of the buildings, mostly inhabited by a poor population, causing the total collapse of many houses …”. Will this reconstruction suffice to save Barga from the next strong earthquake in the Serchio Valley? Things will probably be better than in the most downstream municipalities, also because, if it is true that according to ISTAT, 37% of Barga’s housing stock is pre-1918, i.e. more than a century old, this share of buildings is probably made up of houses that resisted the 1920 earthquake: either because they were built better, or because they were built where the seismic response was less severe than the average, or because of a combination of these two circumstances.

Another example I would like to take concerns the Calabrian-Lucanian border, between the provinces of Potenza and Cosenza in southern Italy. The case is similar to the previous one, but definitely more evident. We are in fact in one of the few portions of the Apennines chain that have never suffered a strong earthquake in historical times, even if the completeness of the seismic record of the area does not exceed a few centuries (with Emanuela Guidoboni in 2000 we wrote a small contribution precisely on this theme: see Note 4). The area had already been identified as a possible “seismic gap” by Japanese seismologist Fusakichi Omori within a study he conducted on the largest earthquakes of the Italian peninsula. In the area in question lie Mormanno (Cosenza, 29°) and Rotonda (Potenza, 30 °), never affected by a strong earthquake, but also Viggianello (Potenza, 178°), hit by a VIII-IX degree in the earthquake of January 26 1708 – which according to the CFTI5Med catalogue “… seriously damaged the village causing extensive destruction and numerous victims …”. On 25 October 2012 this area was hit by an earthquake with Mw 5.3, which tested the solidity of the buildings but above all it spurred a vast effort for the reduction of building vulnerability: a very local circumstance, linked to the occurrence of an earthquake that is not destructive but sufficient to trigger a solid reaction from the institutions, and that could be a welcome exception to what would be expected based on our ranking.

The list of locations where the “seismic memory” has been well cultivated certainly includes many other centers, especially in central and southern Italy: but the effectiveness of these virtuous behaviors will receive confirmation only from the forthcoming earthquakes.

The case of Norcia seems quite special. The famous building regulations enforced by the Papal State (1859) seem to have contributed since then to limit the damage, even in the case of the 1979 earthquake. Viceversa, for mysterious reasons Norcia was included in the seismic code only in 1962. In 2016 it suffered more damage outside the walls than inside. Do you have an opinion on this?

Norcia is ranked 676° place in our classification, mainly by virtue of the 1979 earthquake, but had previously suffered intensity VIII or larger effects in 1730, 1859 and 1879.
The case of Norcia is indeed quite unique. The “fortune” of Norcia towards earthquakes – if the term is granted to me, being perhaps inappropriate in view of what has happened in the city over the past few months (5) – is largely due to two symbolic earthquakes, those of 1859 and 1979, both with a magnitude of around 5.8, and to a sort of wake-up earthquake, that of 1997. Let me explain it better.

Following the 1859 earthquake the prelate Arcangelo Secchi and the architect Luigi Poletti prepared a very accurate analysis of what had happened, accompanied by recommendations on the reconstruction collected in the famous “Building Regulations” approved between the end of 1859 and the spring of 1860. It for this reason that the 1979 earthquake found a building patrimony that on average was substantially more hard-wearing than that of the surrounding towns, although the lesson imparted by the earthquake of 120 years before had perhaps already been partly lost. After 1979 Norcia was rebuilt with a great commitment, both by residents and institutions. The 1997earthquake, whose epicenter was quite far from Norcia, was the occasion for a “recall” of what had been done after 1979, as it is done with vaccines. The nursini – the people of Norcia – have the earthquake in their DNA: and I state this with full knowledge of the facts because some of my maternal cousins were born and raised there.

I believe that Secchi and Poletti’s famous Building Regulations did play a major role; an example for all, that of the Civic Tower, which miraculously survived the 30 October 2016 earthquake. Norcia demonstrates that the lesson taught by history to the local culture may compensate for any delays in the introduction and implementation of anti-seismic codes. In Norcia the local culture has not waited for modern codes but has anticipated them, also thanks to Secchi and Poletti. We should also remember that in Italy the codes have always only affected only new buildings and those that have been significantly restored; nothing is imposed to the owners of existing buildings. In my opinion this is one of the great unresolved issues, perhaps the greatest, as well as a source of misunderstandings and ill-fated expectations.

If we want, the case you mention – that of greater damage outside the walls of Norcia compared to the historic center s.s. – is a paradoxical confirmation of the role of “historical memory” in mitigating the effects of earthquakes. Here, too, an engineer should speak in my place, but I will try to venture hypotheses, some of them quite obvious.

First of all it must be said that the value of the “historical memory” of the nursini applies only to the “historical component” of the building stock. This statements seems redundant, but in fact what could be the value of “historical memory” for a condominium built in the 1980s, very different from the constructive style of the city center but rather similar to what you see in many urban suburbs of Italy?
The construction style is also the basis of my second hypothesis, stemming from the evidence that a load-bearing masonry building can also defend itself very well from earthquakes, provided that it is well built or renovated, according to the best practices in use in the various epochs. Recall that the 30 October shock was a Mw 6.5 earthquake located just below the center of Norcia: the accelerations observed were very significant, to the point of making the performance of masonry buildings truly extraordinary. In condominiums built outside the walls, instead – but I insist that this is the opinion of a geologist – once again we have seen that in normal reinforced concrete buildings the performance of the supporting structure can also be very different from that of of infills and of any accessory structures. This means that the building is unlikely to collapse, unless there are evident flaws in its design, but also that non-structural damage can be so burdensome as to make it convenient to demolish and rebuild: a paradox which I believe has been addressed in the new Norme Tecniche sulle Costruzioni 2018 (Technical Standards for Construction, or NTC18), at least for the future.

Have you had the chance to discuss this study with some seismic engineer, or have you received any reaction from that environment? How do you think your results can be used, and above all by whom?

We have received words of encouragement both from various engineers to whom we have submitted the first version of the manuscript, and from the public to whom we have presented the study in the most diverse occasions. But that’s all, because there have not been other reactions, at least for now – and I refer above all to those of the institutions. We also tried to establish a relationship with the Casa Italia Mission Structure, when it was still directed by Prof. Azzone, but also in this case there was no reaction. Evidently Casa Italia does not share with us the need to set priority criteria for risk mitigation interventions soon: interventions that the Structure is not implementing anyway, if not in the ten symbol-building sites that will be opened in as many symbol cities.

We believe that earthquake mitigation must combine excellent scientific assumptions – and in Italy we believe we have both a rich heritage of seismicity data, and an excellent expertise to make the best use of them – with much pragmatism as regards how and where invest any resources that may become available for seismic improvement. We also believe that the Sisma Bonus (“Seismic Bonus”) could be a useful tool, but only on condition that the criteria for assigning its benefits are drastically reviewed (and that the Sisma Bonus is made overall more “attractive”, by reviewing the delivery mechanisms: but on this I leave the floor to the experts of financial things). In particular, we maintain that a ranking of priorities must be drawn up between the various municipalities and the various aggregates of buildings, choosing them on the basis of their presumable vulnerability – on the basis of hypotheses such as those formulated by us – or real – on the basis of punctual findings, even if expeditious.

Launching this process harmoniously requires a solid control room, which I believe should include researchers, representatives of the professional associations involved, ISTAT officials, as well as institutional representatives of various origins (the Italian Civil Protection, the Ministry of Economic Development or MiSE, the National Association of Italian Municipalities etc.). For over two years I thought and hoped that this control room could coincide with the structures of Casa Italia, but today it is clear to me that I was wrong.

Finally – last but not least – it is necessary to launch a multi-year approach to the mitigation of seismic risk; an approach which at least on such an important issue breaks down the endemic “five years perspective” (when it’s good) that from always characterizes the governments of the Belpaese. But the ability to effectively plan the future is not one of the traditional virtues of the Italians, and therefore I fear we will not go very far on this side.

As a researcher I can clearly distinguish what makes sense from what could only be written in a book of dreams. However – and with this I close the circle you opened with the first question – I would like to dedicate the next few years to promote a change of course on how these issues are coped with in Italy today. I consider it a moral duty of my generation of seismologists; a generation stemming from the immense – and certainly avoidable – catastrophes of Friuli and Irpinia, and from the subsequent birth of a modern and effective Civil Protection.

(1) https://www.sciencedirect.com/science/article/pii/S2212420917302376?via%3Dihub

(2) http://www.cngeologi.it/2018/08/27/geologia-tecnica-ambientale-7/

(3) http://storing.ingv.it/cfti/cftilab/forgotten_vulnerability/#

(4) https://www.annalsofgeophysics.eu/index.php/annals/article/view/3672

(5) http://www.ansa.it/umbria/notizie/2019/04/19/continua-protesta-comitato-norcia_584b1669-91d1-4654-9563-504bdc31f3ba.html

Tutti sulla stessa faglia: un’esperienza di riduzione del rischio sismico a Sulmona (colloquio con Carlo Fontana)

Carlo Fontana è un ingegnere meccanico che vive nei pressi di Sulmona, e quindi nei pressi di una delle faglie appenniniche più pericolose: quella del Morrone. Lavora nel settore industriale e fino al 2009 non ha considerato il rischio sismico come rilevante nella sua vita. Con lui abbiamo discusso della sua esperienza di riduzione della vulnerabilità sismica della sua casa e di impegno pubblico sul tema della prevenzione nel suo territorio.

Ci racconti come era – dal punto di vista sismico – l’edificio in cui vivevi ?

L’edificio in questione è la casa paterna di mia moglie, che abbiamo deciso di ristrutturare dopo il matrimonio per renderla bifamiliare. Era composto da un nucleo originario in muratura calcarea tipica della zona, primi anni del 900, a cui è stato affiancato un raddoppio negli anni  ‘60 con muratura in blocchi di cemento semipieni. Solai in profili metallici e tavelle, scala in muratura e tetto in legno. E’ stata danneggiata e resa parzialmente inagibile dai terremoti del 7 e 11 maggio 1984. Nel 2008 era ancora in attesa del contributo per un intervento di riparazione progettato a ridosso del sisma.

Fig01

Qual è stata la molla che è scattata per indurti a rivedere il progetto relativo alla tua abitazione? Continua a leggere

Sisma Safe: come scegliere di “essere più antisismico” (colloquio con Giacomo Buffarini)

Quando un edificio può essere definito sicuro in caso di terremoto? E’ sufficiente che sia stato progettato e realizzato secondo le norme sismiche? E quali norme, visto che sono cambiate e migliorate nel corso degli anni?
Queste ed altre problematiche vengono affrontate dalla iniziativa “Sisma Safe”, un’associazione senza scopo di lucro che, attraverso un’attività informativa, vuol dare una risposta al bisogno di sicurezza individuando degli esempi positivi che siano in grado di trascinare il mercato edilizio. Ne parliamo con Giacomo Buffarini, ingegnere, ricercatore presso l’ENEA, ente che collabora a questa iniziativa.

Come è nata l’iniziativa “Sisma Safe” e quali sono gli obiettivi che persegue?

Sisma Safe nasce dalla sensibilità di alcune professioniste (ingegneri e architetti) che hanno compreso come ogni sforzo in ambito edilizio di miglioramento delle performance energetiche, del comfort abitativo, o ogni altro investimento risultano vani se non è garantita la sicurezza strutturale e che risulta, quindi, necessario limitare la vulnerabilità sismica di un edificio. L’obbiettivo è fare in modo che l’edificio, a seguito di un evento sismico della portata di quello previsto dalla normativa, non solo consenta la salvaguardia della vita (ossia non crolli), ma che possa continuare ad essere usato; più semplicemente subisca un danneggiamento nullo o estremamente limitato. Continua a leggere

Masonry buildings to the test of Italian earthquakes (interview with Guido Magenes)

…..This comparison with medicine fits very well, there are really many similarities between the work of the technician who has to understand what to do with an existing building and that of the doctor who tries to make a diagnosis and to find a correct therapy for a patient…..


versione italiana qui: Gli edifici in muratura alla prova dei terremoti italiani (colloquio con Guido Magenes)


Guido Magenes is Professor of Structural Engineering at the University of Pavia and IUSS Pavia. He is also the coordinator of the Masonry Structures division of the EUCENTRE Foundation. His area of ​​greatest competence is the seismic behavior of masonry buildings and for this reason he has also participated and still participates in numerous Italian and European technical-regulatory committees.
We discussed with him the behavior of masonry buildings in Italy, with particular reference to what happened during the last earthquakes.

1. The earthquakes of 2016 have determined a sequence of shaking that has put a strain on the buildings of the affected area, especially those in masonry. The effects seen in the field are very different: next to the buildings already heavily damaged by the earthquake of August 24th, there are others that have seen their condition worsen after the shock in October, and others that seem not to have suffered serious damage in all the sequence. Do you have an explanation for this?

 The masonry buildings stock in our country has very variable characteristics and qualities, depending on the era of construction, the materials and construction criteria that were used, the type and architectural form (ordinary buildings or churches, palaces, towers, etc … ), any maintenance and reinforcement or tampering and weakening processes that may have occurred over time. Certainly there are recurrent types of problems, but the diversity of the behavior of masonry buildings, apart from the severity of the shaking (or the different ground motion in the various sites), is  essentially due to this great variability.
Therefore, in the specific case of the seismic sequence of central Italy, which involved a very large area and a considerable variety of buildings, we observed what you say: from the recently built building, of a few storeys, in great part or fully compliant with the modern design and construction criteria, which did not show significant damage, to historic buildings with large spans and heights, such as churches, which tend to be more vulnerable and have therefore suffered great damage and collapse because of their dimensions, geometric ratios and their structural organization. In many if not most cases, also the poor quality of the materials has further worsened the situation.

2. In all the municipalities affected, seismic regulations were in force, with various years of enforcement (the extremes are represented by Amatrice and Accumoli, 1927, and Arquata del Tronto, 1984). The distribution of the damage does not seem to be influenced by these differences; is there a reason?Schermata 2018-02-05 alle 20.44.50Not all regulations are equally effective: a 1927 standard is obviously very different, under many points of view, from a rule of the 1980s or the years 2000s and, as I mentioned above, the buildings built in compliance with the latest rules behaved generally well (constructed with artificial blocks and mortars of good strength, or even stone buildings demolished and rebuilt with good quality mortars). Therefore, I would not say that the distribution of damage is not at all influenced by the regulatory context. It depends on what was written in the norm and how many buildings were built or repaired or reinforced after the introduction of the norm (in the affected centers a significant percentage of the buildings had been built before the seismic regulations that you mentioned).

The rules and design criteria are not necessarily born perfect and they have to adjust, to evolve based on the experience of earthquakes. For example, it is only fifteen or twenty years that we began to recognize that certain types of interventions proposed and widely applied after the earthquakes of Friuli and Basilicata can be harmful or plainly ineffective (think of the infamous reinforced concrete ring beams “in breccia” inserted at intermediate floors in an existing building in stone masonry: in Umbria-Marche ’97 we have begun to see its shortcomings).
In the areas in which the presence of a regulation or a seismic classification seems to have had no effect, it must also be taken into account that the on-site control of the quality of construction and execution, in particular for masonry buildings, were inexistent or ineffective at least until the more recent regulations. The use of a very bad mortar is a recurrent element in many of the old masonry buildings collapsed or damaged in the last seismic sequence. In centers like Accumoli and Amatrice it seems that even where interventions had been carried out on buildings, replacing old floors, for example, or inserting some ties, the problem of poor quality of the masonry had been greatly overlooked, ultimately making the interventions ineffective. We can add that a large part of those areas suffered a considerable depopulation since the early 1900s, with inevitable consequences on the maintenance of buildings, which has led to an increase in widespread vulnerability.

Then there are some particular cases in which historical norms and more recent norms seem to have had a positive effect. Take Norcia’s example: without going into the details of the measurements of the characteristics of the ground motion, it is a fact that Norcia in the last sequence suffered strong shaking, comparable to those of Amatrice and Accumoli but with a much lower damage to buildings. In the history of Norcia there were two very significant events that may have affected  the response of the buildings in the 2016 sequence, one before and one following the 1962 regulations. In 1859 a strong earthquake caused numerous collapses and victims in some areas of the historical center, and following this the Papal State issued a quite effective regulation that gave a series of provisions for repairs and reconstructions: on geometry, in particular on the maximum height of the buildings (two floors), on the construction details, on the quality of materials. Then, in 1979 there was another earthquake in Valnerina, after which other parts of the historic center were damaged, followed by a series of systematic reinforcement measures on many buildings. In many of these buildings the reinforcement of the vertical walls (even with the controversial technique of the reinforced plaster) has remedied one of the main elements of vulnerability, i.e. the weakness/poor quality of the masonry walls. If for a moment we leave aside the elements that can go against the use of reinforced plaster (such as the durability of the intervention), and we see it simply as a technique that has remedied a factor of great vulnerability, we can say that for Norcia there has been a positive combined effect of pre-modern and more recent regional regulations, stemming from the direct experience of seismic events.

3. Let’s  talk about seismic regulations and in particular of their engineering aspects. We hear that they have changed a lot over time, and that perhaps the non-recent ones were not entirely effective. Is it true, and if so why?

As for the engineering component of the regulation, what we now know about the structural and seismic behavior of buildings, in masonry and other structural systems, is the result of a continuous evolution through the experience of earthquakes in Italy and in other parts of the world. In Italy the engineering study of masonry buildings has resumed life, after decades of almost total abandonment, after the 1976 earthquake in Friuli. The first norms/codes that give indications on how to “calculate” a masonry building in Italy date back to the early 80s (to “calculate” I mean “quantitatively assess the level of safety”). Although “calculation” is not the only component of the design, this fact gives the idea of ​​how only the very recent rules have a technical-scientific basis aligned with current knowledge. I would like to say that the absence of calculation in a project does not necessarily imply that the building is unsafe: in the past we followed geometric and constructive rules of an empirical type, based on the experience and intuition of the mechanical behavior, although not explicated in detailed calculations. Even today, for the design of a simple and regular masonry building, it is possible to follow codified geometrical and constructive rules that avoid detailed or complex calculations, but still achieve an adequate level of safety.
The experience of the earthquakes of Irpinia, Umbria-Marche, until the most recent in central Italy, have been a continuous test and a source of knowledge. For example, as mentioned in my answer to the previous question, the Umbria-Marche 1997 earthquake, besides highlighting the great vulnerability of churches and of certain historical structures, has been an important test for strengthening criteria and techniques on masonry buildings that were proposed and developed following the Italian earthquakes of the late ’70s, showing how some techniques are not very effective or can even be harmful if applied indiscriminately and without awareness

To conclude my answer with my opinion on current technical standards, I think that as regards the design of new buildings we are really at a very advanced state of progress, which effectively attains the levels of safety that today are considered adequate. I think there are more uncertainties on the assessment and strengthening of existing buildings, even if it is not so much a regulatory problem but rather of scientific knowledge and of the correct identification of strategies and techniques for the intervention. It is certainly easier to design and build a seismic-resistant building from scratch, than to assess and intervene on an existing building.

4. How much – and how – does the construction and detailing of a building affect its seismic safety, beyond the design?

The question gives me the opportunity to dwell a little more on what is meant by “design”, which is something different from the mere “calculation”. The design includes all aspects of overall conception, choice and organization of the structure, choice of materials and construction techniques (with the awareness of how they can and should be executed in situ), performance verification calculations in terms of safety against collapse and of satisfactory behavior in normal operation, prescriptions on construction details. In modern seismic design it is also necessary to take into account, when relevant, the seismic response of the non-structural parts of the construction. There must also be a check that what is prescribed in the design is actually implemented during construction.

The calculation is therefore only a component of the design. It is interesting to note that most of the existing masonry buildings were not calculated, at least as we understand structural calculations now. The first Italian national technical standard on masonry constructions with a sufficiently detailed description of the calculations for the structural verification dates back to 1987. Technical standards with indications for the seismic calculation, were issued after the earthquake of Friuli 1976 and in subsequent times. Before those norms, a technical literature and manuals existed, with reference to the principles of mechanics, as well as a building tradition. I would like to clarify that here I am talking about regulations/norms that tell how to calculate the resistance of a masonry building, subject to seismic or non-seismic actions. Just to give an example, the Royal Decree of 1909 (post earthquake of Messina), a historical milestone as regards seismic regulations, gives criteria to define the seismic action, gives constructive and geometric rules but does not tell how to calculate the resistance (the capacity, according to the modern technical language) of a masonry building.

The constructive tradition based on the respect of the “rule of art” always had in mind the importance of construction details, of the quality of the materials, of how the building is built, and this has allowed and allows well-constructed buildings (but not “calculated”, i.e. non-engineered) to withstand even very violent seismic shocks. In modern buildings, the compliance during construction site of the execution rules, the control of the quality of the materials, is equally important, although this holds for masonry as for the other types of construction. The sensitivity of the structure to constructional defects is a function of the level of robustness of the structural system. A masonry box-like construction, strongly hyperstatic (i.e. where the number of resistant elements is higher than the minimum necessary to ensure equilibrium under the applied loads) could in principle be less sensitive to construction defects than an isostatic prefabricated structure (i.e. where the number of resistant elements is just equal to the minimum necessary to ensure equilibrium under the applied loads, so that the failure of a single element is sufficient to generate a collapse). Obviously we are talking about local defects and not generalized over the whole construction. If all materials are poor quality throughout the construction, then it is a great problem, but not necessarily a masonry building is more sensitive to such problem than, say, a reinforced concrete frame, in which also defects in the reinforcement detailing are possible (for instance in beam-column joints or in lap splices or in anchorage of rebars and so forth).

5. Many surveyors in post-earthquake reconnaissance activities have found traces of interventions that have allegedly weakened the structures. Do you agree?

In post-earthquake surveys, carried out quickly in emergency conditions, it is not always possible to clearly understand the history of the building and what changes have been made, in what time and modalities, but sometimes it is clear that some modifications to the construction have been detrimental to safety. Often these are interventions that were made with total unawareness of the effects on structural safety and purely for the purpose of use and redistribution of space. In other cases, more rare, there are also interventions made with “structural” purposes, perhaps even with the idea of ​​achieving an increase in safety, but which in reality were harmful or ineffective. A classic example, often discussed in the literature also on the basis of the Italian post-earthquake recognitions from Umbria-Marche 1997 onwards, is the insertion of new, rigid and heavy structural elements (such as the replacement of a wooden floor with a reinforced concrete floor) in a building with very weak masonry (for example masonry made of irregular stones with poor mortar), without the masonry being properly consolidated. There was a period, following the earthquakes of Friuli and Irpinia, where much emphasis was given to the fact that rigid diaphragms (i.e. the floors and roofs) increase the hyperstaticity, hence the robustness of the construction and the so-called “box behaviour”, by which engineers tried to replicate in existing structures something that is relatively simple to implement, and whose effects are well controllable, in new constructions, but which in an existing construction has great problems of practical implementation (particularly in the connection between new elements and existing elements) and of potentially negative structural effects (increase of stresses in an already weak masonry). It is important to note that the effectiveness of the interventions is tested by earthquakes that take place in later times, and in some areas of central Italy it has been possible to draw indications of this kind. In the earthquake of Umbria-Marche in 1997 it was possible to observe various problematic situations in buildings where the existing floors had been replaced by heavier and more rigid slabs.

Allow me, however, to add a further comment. From the scientific point of view, the fact that an intervention is “harmful” or weakens the structure compared to the non-intervention is verifiable experimentally only if there is a confirmation of what would happen to the building without intervening and what would happen following the intervention . This type of comparison in the vast majority of practical cases  is not possible, except for very fortunate cases of almost identical buildings built on the same ground where one was reinforced and the other not, or that were reinforced with different methods. Or through laboratory experiments, comparing specimens tested on a “shaking table” (earthquake simulator). So, in general I am always rather skeptical of interpretations given on the basis of purely visual rapid surveys, without the necessary in-depth study of the details and without a quantitative analysis carried out in a competent and thorough manner.
I can say (and I know that many colleagues have a similar opinion) that in many cases seen in central Italy the collapse of the construction would have taken place regardless of the type of floor, light or heavy, rigid or flexible, by virtue of the bad quality of the masonry, which appeared to be the main problem.

6. How did the repetition of the strong shocks play in the aggravation of the damage (where it occurred)? Is it something that is implicitly foreseen, and taken care of, by the seismic norms? On the other hand, how do you explain the numerous cases of almost total absence of damage?

The repeated shaking aggravates the damage, the more the damage caused by the previous shock is serious. It seems a rather obvious statement, but essentially it is what happens. For example, if a first shock on a masonry building generates only a few cracks, not very wide and of a certain type (for example horizontal cracks, which close after the shock due to selfweight), the building has not lost much of its resistance; so if it is subjected to repeated shaking, less intense than the first shock, it is possible that the damage does not get too much worse, and if it is subjected to a shaking stronger than the first shock it will have a resistance equal to or slightly less than it would have if the first shock had not been there. On the other hand, if a shock leads to the development of diagonal cracks (so-called “shear cracks”) or vertical cracks with spalling, the damaged part has lost a significant portion of its ability to resist and subsequent repeated shaking can lead to progressive degradation and collapse, even if the subsequent shocks suffered by the building, individually, are perhaps less strong than the first one. This is something visible and reproducible also in the laboratory.

That said, there are types of constructions and structural elements that are more or less sensitive to the repetition of the seismic action. When seismic engineers speak of “ductility” of the structure or of a mechanism, they also refer to the ability of a structure to resist repeated loading cycles well beyond the threshold of the first crack or the first visible damage, without reaching collapse. A well-designed modern reinforced concrete construction is a structure of this type, for example. Unreinforced masonry, on the other hand, is more susceptible to damage induced by the repetition of loading cycles beyond cracking. As a consequence, existing masonry buildings, once damaged by a first shock, are more vulnerable to subsequent shocks. On the other hand, if the first shock does not cause significant damage, the safety of the building remains, in most cases, more or less unchanged and this accounts for the fact that numerous masonry constructions have also resisted repeated shocks. Unfortunately, sometimes the damage may not be clearly visible. Damage in masonry originates in the form of micro-cracks (not visible to the naked eye) which then develop into macro-cracks. If in a laboratory test a sample of masonry is pushed to a condition very close to the onset of the macro-cracks but the load is removed just before they develop, it may happen that in a subsequent loading phase the macro-cracks develop at a load level lower than that achieved in the first phase. It may therefore happen that a building that has resisted a violent shock without apparent damage is visibly damaged by a subsequent shock less violent than the first.

You ask me if the behavior of the structure under repeated shocks is implicitly considered in the seismic norms: the answer is yes, at least for certain aspects. For example, the respect of certain construction details in reinforced concrete and the application of certain rules in the sizing of the sections and of the reinforcement have this purpose: to make the structure less susceptible to damage under repeated actions. Moreover, less ductile structures, such as those in unreinforced masonry, are designed with higher seismic “loads” than the more ductile structures, also to compensate their greater susceptibility to degradation due to repeated action. However, there are some aspects of the problem of resistance and accumulation of damage under repeated shaking that remain to be explored and are still cutting-edge research topics. In particular, if it is true that theoretical models are becoming available to assess how the risk (i.e. the probability of collapse or damage) evolves in a building or a group of buildings as time passes and seismic shocks occur, these models must still be refined to give results that are quantitatively reliable.

7. It seems to me that the variety of masonry buildings, at least in Italy, is really large: so large that knowing them requires an approach similar to that of medicine, where each case has its own peculiarities. Therefore, there is perhaps no universal therapy, every case requires a specific care: is it correct? And if so, given that the building and construction techniques and quality of different areas of the Apennines (and others) are similar to those of the areas affected in 2016, should a similar destruction be expected to repeat again?

This comparison with medicine fits very well, there are really many similarities between the work of the technician who has to understand what to do with an existing building and that of the doctor who tries to make a diagnosis and to find a correct therapy for a patient. From the technical point of view there is no universal therapy and no (good) doctor would be able to apply a therapeutic protocol without the anamnesis, the objective examination, any necessary instrumental or laboratory tests and the formulation of a diagnosis (which tells us what is the patient’s disease / health status, and then defines what he needs, the therapy). The good technician follows a similar path to arrive at the evaluation of safety and possible hypotheses of intervention (or not intervention). Of course it is possible and necessary, as is the case for medicine and public health, to define strategies and policies for prioritization and allocation of resources to ensure that the overall seismic risk in our country decreases. Certainly, where the old buildings have not been subject to maintenance, or just to aesthetic and functional maintenance without structural reinforcement, we can expect destructions similar to those seen in 2016 on the occasion of future earthquakes of comparable magnitude. This applies to both public and private buildings.

Where instead we have intervened or will intervene in a conscious way, paying attention to the problem of seismic safety, the level of damage to be expected is  lower, as the experience of the past earthquakes teaches us.
Allow me to conclude this interview with some non-purely technical engineering comments. The possibility of reducing the seismic risk in Italy depends on many factors, ranging from how politics govern the problem of natural hazards, to how technicians, individually and collectively, interact and communicate with politics, to how the presence of risk is communicated to the population, to how, as a consequence,  the citizen makes his choices when he buys or takes decisions to maintain a property. In my opinion it is necessary to progressively evolve into a system in which the citizen recognizes that it is in his own interest to pursue a higher seismic safety, initially spending a little more, because he will have a return in the future not only in terms of safety but also of economic benefit, for example in the market value of his property. The “Sismabonus” initiative is certainly a first step in this direction, but other steps will have to be taken. The goal, certainly not easy to achieve, should be that the safety level of a building has a clear and recognized economic market value, and I think this would work for both the small owner and for real estate investors. I know that some are scared by this perspective, but personally I think that, at least for what concerns privately owned real estate and facilities, there are no other ways to achieve, within a few decades, a substantial and widespread reduction of seismic risk in Italy.

 

Gli edifici in muratura alla prova dei terremoti italiani (colloquio con Guido Magenes)

…….”Questo paragone con la medicina calza benissimo; ci sono veramente tante analogie tra il lavoro del tecnico che deve capire cosa fare di un edificio esistente e quello del medico che cerca di fare una diagnosi e di individuare una terapia corretta su un paziente”…..


English version here: Masonry buildings to the test of Italian earthquakes (interview with Guido Magenes)


Guido Magenes è professore di Tecnica delle Costruzioni all’Università di Pavia e allo IUSS Pavia. E’ inoltre coordinatore della sezione murature della Fondazione EUCENTRE. La sua area di maggior competenza è il comportamento sismico delle costruzioni in muratura e per questo ha anche partecipato e tuttora partecipa a numerosi comitati tecnico-normativi italiani e europei. 
Abbiamo discusso con lui del comportamento degli edifici in muratura in Italia, con particolare riferimento a quanto avvenuto in occasione degli ultimi terremoti.

1. I terremoti del 2016 hanno determinato una sequenza di scuotimenti che ha messo a dura prova gli edifici della zona colpita, in particolare quelli in muratura. Gli effetti visti sul campo sono molto diversi fra loro: accanto agli edifici già pesantemente danneggiati dal terremoto del 24 agosto ve ne sono altri che hanno visto aggravare le loro condizioni dalle scosse di ottobre, e altri che sembrano non aver subito danni gravi in tutta la sequenza. Hai una spiegazione per questo?

Il patrimonio di edifici in muratura esistenti sul nostro territorio ha caratteristiche e qualità molto variabili, in funzione dell’epoca di costruzione, dei materiali e dei criteri costruttivi utilizzati, della tipologia e forma architettonica (edifici ordinari o chiese, palazzi, torri, eccetera…), degli eventuali interventi di manutenzione e rinforzo o manomissione e indebolimento succedutesi nel tempo. Certamente esistono tipologie problematiche ricorrenti, ma la diversità del comportamento degli edifici in muratura, al netto della severità dello scuotimento (ovvero del diverso moto del terreno nei vari siti), è dovuta appunto a questa grande variabilità.
Nel caso specifico della sequenza sismica dell’Italia centrale, che ha interessato un’area molto vasta e quindi una notevole varietà di edifici, si è quindi osservato quello che dici tu: dall’edificio di costruzione recente, di pochi piani, in buona parte o in tutto conforme ai criteri moderni di progettazione e di costruzione, che non ha presentato danni di rilievo, agli edifici storici con grandi luci ed altezze, come ad esempio le chiese, che tendono ad essere più vulnerabili e hanno quindi subito danni significativi e crolli a causa delle loro dimensioni, dei rapporti geometrici e della loro organizzazione strutturale. In molti casi anche la scarsa qualità dei materiali ha ulteriormente aggravato la situazione.

2. In tutti i Comuni colpiti vigeva la normativa sismica, con diversi anni di decorrenza (gli estremi sono rappresentati da Amatrice e Accumoli, 1927, e Arquata del Tronto, 1984).

Schermata 2018-02-05 alle 20.44.50da https://terremotiegrandirischi.com/wp-content/uploads/2018/02/considerazioni-su-flagello-del-terremoto-e-riduzione-del-rischio-sismico.pdf

La distribuzione del danno non sembra essere influenzata da queste diversità; c’è una ragione?

Non tutte le normative sono ugualmente efficaci: una norma del 1927 è ovviamente molto diversa, sotto tanti punti di vista, da una norma degli anni ’80 o degli anni 2000 e, come ho accennato sopra, gli edifici costruiti nel rispetto delle norme più recenti si sono comportati generalmente bene (edifici costruiti con blocchi artificiali e malte di buona resistenza, oppure anche edifici in pietra demoliti e ricostruiti con malte di buona qualità).
Non direi quindi che la distribuzione del danno non sia del tutto influenzata dal contesto normativo. Dipende da cosa c’era scritto nella norma e da quanti edifici sono stati costruiti o riparati o rinforzati dopo l’introduzione della norma (nei centri colpiti una percentuale notevole degli edifici era stata costruita prima delle normative sismiche che hai ricordato). Le norme e i criteri progettuali non nascono necessariamente perfetti e aggiustano il tiro sulla base dell’esperienza dei terremoti. Ad esempio, certamente è solo da quindici-venti anni che si è incominciato a riconoscere che certi tipi di interventi proposti e largamente applicati dopo i sismi del Friuli e della Basilicata sono dannosi o non funzionano (si pensi ai famigerati ”cordoli in cemento armato in breccia” inseriti in un edificio esistente in muratura di pietrame: è da Umbria-Marche ’97 che si è incominciato a capirne l’inefficacia).
Nei centri in cui la presenza di una normativa o di una classificazione sismica sembra non aver sortito alcun effetto bisogna tener conto anche del fatto che i controlli sulla qualità della costruzione degli edifici, in particolare in muratura, erano inesistenti o inefficaci almeno fino alle legislazioni più recenti. L’uso di una malta scadentissima è un elemento ricorrente in molte delle vecchie costruzioni in muratura crollate o danneggiate nell’ultima sequenza sismica. In centri come Accumoli e Amatrice sembra che anche dove sono stati fatti interventi sugli edifici, sostituendo ad esempio i vecchi solai, o inserendo qualche catena, non ci fosse consapevolezza o si sia molto sottovalutato il problema della scarsa qualità muraria, rendendo in definitiva inefficaci gli interventi fatti. Aggiungiamo poi che gran parte di quelle aree hanno subito dagli inizi del 1900 ad oggi un notevole spopolamento, con inevitabili conseguenze sulla manutenzione delle costruzioni, che ha portato ad un incremento di vulnerabilità piuttosto diffuso.

Ci sono poi alcuni casi particolari in cui norme storiche e norme più recenti sembrerebbero aver avuto un effetto positivo. Prendiamo l’esempio di Norcia: senza entrare nel dettaglio delle misurazioni delle caratteristiche del moto, è un dato di fatto che Norcia nell’ultima sequenza abbia subito forti scuotimenti, paragonabili a quelli di Amatrice e Accumoli ma con un danno agli edifici molto inferiore. Nella storia di Norcia ci sono stati due eventi molto significativi che hanno avuto un effetto notevole sulla risposta degli edifici in quest’ultima sequenza, uno antecedente ed uno seguente alla norma del 1962. Nel 1859 un forte terremoto causò numerosi crolli e vittime in alcune zone del centro storico, e a seguito di ciò lo Stato Pontificio emanò un regolamento molto efficace che dava una serie di disposizioni sulle riparazioni e le ricostruzioni: sulla geometria, in particolare sull’altezza massima degli edifici (due piani), sui dettagli costruttivi, sulla qualità dei materiali. Poi nel 1979 c’è stato un altro terremoto in Valnerina, a seguito del quale si sono danneggiate altre parti del centro storico, a cui hanno fatto seguito una serie di interventi sistematici di rinforzo, su molti edifici. In molti di questi edifici il rinforzo delle murature verticali (pur con la tecnica controversa dell’intonaco armato) ha rimediato ad uno dei principali elementi di vulnerabilità, cioè la scarsa qualità muraria. Se per un attimo lasciamo da parte gli elementi che possono andare a sfavore dell’uso dell’intonaco armato (in primis la durabilità dell’intervento), e lo vediamo semplicemente come una tecnica che ha rimediato ad un fattore di grande vulnerabilità, possiamo dire che per Norcia c’è quindi stato un effetto positivo di normative regionali pre-moderne e più recenti scaturite dall’esperienza diretta di eventi sismici.

3. Parliamo di normativa sismica e in particolare dei suoi aspetti ingegneristici. Si sente dire che è variata molto nel tempo, e che forse quella non recente non era del tutto efficace. E’ vero, e se sì perché?

Per quanto riguarda la componente ingegneristica della norma, quello che sappiamo ora del comportamento strutturale e sismico delle costruzioni, in muratura ma non solo, è il frutto di una continua evoluzione attraverso l’esperienza dei terremoti italiani e in altre parti del mondo. Da noi in Italia lo studio ingegneristico delle costruzioni in muratura ha ripreso vita, dopo decenni di quasi totale abbandono, dopo il terremoto del Friuli. Le prime norme in cui si danno indicazioni su come “calcolare” un edificio in muratura in Italia risalgono ai primi anni ’80 (per “calcolare” intendo “valutare quantitativamente il livello di sicurezza”). Per quanto il “calcolo” non sia l’unica componente della progettazione, questo fatto dà l’idea di come siano solo le norme molto recenti ad avere una base tecnico-scientifica allineata con le conoscenze attuali. Ci tengo a dire che l’assenza del calcolo in un progetto non implica necessariamente che l’edificio non sia sicuro: nel passato si seguivano regole geometriche e costruttive di tipo empirico, basate sull’esperienza e sull’intuizione del comportamento meccanico, ancorché non esplicitata in calcoli. Ancor oggi per la progettazione di un edificio in muratura semplice e regolare è possibile seguire regole geometriche e costruttive codificate che consentono di evitare calcoli dettagliati o complessi, raggiungendo comunque un livello adeguato di sicurezza.
Le esperienze dei sismi dell’Irpinia, dell’Umbria-Marche, via via fino ai più recenti dell’Italia centrale, sono stati un continuo banco di prova e una fonte di conoscenza. Ad esempio, come accennato nella risposta alla domanda precedente, il terremoto Umbria-Marche 1997, oltre a sottolineare come sempre la grande vulnerabilità delle chiese e di certe strutture storiche, è stato un notevole banco di prova per criteri e tecniche di intervento sugli edifici in muratura proposti e sviluppati a seguito dei terremoti italiani di fine anni ’70, mettendo in evidenza come alcune tecniche non risultano essere molto efficaci o possono essere addirittura controproducenti se applicate in modo indiscriminato e inconsapevole.

Per concludere questa mia risposta con una mia opinione sulle attuali norme tecniche, credo che per quel che riguarda la progettazione delle nuove costruzioni siamo veramente ad un livello molto avanzato e che consegue i livelli di sicurezza che oggi si ritengono adeguati  Credo che ci siano più incertezze in merito alla valutazione e al rinforzo degli edifici esistenti, anche se non è tanto un problema normativo ma proprio di conoscenze scientifiche e di corretta individuazione di strategie e tecniche per l’intervento. E’ certamente più facile concepire e costruire ex novo un edificio sismo-resistente, che valutare e intervenire su un edificio esistente.

4. Quanto – e come – gioca nella sicurezza sismica di un edificio in muratura la sua realizzazione, al di là del progetto?

La domanda mi dà l’occasione di soffermarmi ancora un momento su cosa si intende per “progetto”, che è qualcosa di diverso dal mero “calcolo”. Il progetto comprende tutti gli aspetti di ideazione, concezione, scelta e organizzazione della struttura, scelta di materiali e tecniche costruttive con la consapevolezza di come potranno e dovranno essere realizzati in opera, calcoli di verifica delle prestazioni in termini di sicurezza e di comportamento in esercizio, prescrizioni sui dettagli costruttivi. Nella progettazione sismica moderna è inoltre necessario tener conto, quando rilevante, della risposta sismica delle parti non strutturali della costruzione. Deve inoltre esserci il controllo che quanto prescritto nel progetto sia realizzato in fase di costruzione. Il calcolo è quindi solo una componente del progetto. E’ interessante quindi notare come gran parte degli edifici esistenti in muratura non è stato calcolato, perlomeno come intendiamo il calcolo strutturale ora. La prima norma tecnica nazionale sulle costruzioni in muratura con una descrizione sufficientemente dettagliata dei calcoli per la verifica strutturale risale al 1987. Norme tecniche con indicazioni per il calcolo sismico, sono state emanate dopo il sisma del Friuli 1976 e via a seguire. Prima di quelle norme esisteva sostanzialmente una letteratura e una manualistica tecnica, con riferimento ai principi della meccanica, nonché una tradizione costruttiva. Vorrei chiarire che sto parlando di norme che dicano come calcolare la resistenza di un edificio in muratura, soggetto ad azioni sismiche o non sismiche. Tanto per fare un esempio, il Regio Decreto del 1909 (post terremoto di Messina), grande esempio storico di normativa sismica, dà criteri per definire l’azione sismica, dà regole costruttive e geometriche ma non dice come si calcola la resistenza (quella che oggi si chiamerebbe la capacità) di un edificio in muratura.

La tradizione costruttiva basata sul rispetto della “regola dell’arte” ha sempre avuto ben presente l’importanza del dettaglio costruttivo, della qualità dei materiali, di come l’edificio viene costruito, e questo ha consentito e consente ad edifici ben costruiti ma non “calcolati” di resistere egregiamente a scosse sismiche anche molto violente. Nella costruzione moderna il rispetto in cantiere delle regole esecutive, del controllo della qualità dei materiali, è altrettanto importante, anche se lo è per la muratura come per le altre tipologie. La sensibilità della struttura a difetti costruttivi è funzione del livello di robustezza della concezione strutturale. Una costruzione scatolare in muratura, fortemente iperstatica (cioè in cui il numero di elementi resistenti è superiore al minimo necessario per garantire l’equilibrio dei carichi) potrebbe in principio essere meno sensibile al problema di una struttura prefabbricata isostatica (cioè in cui il numero di elementi resistenti è pari al minimo necessario per garantire l’equilibrio dei carichi, per cui è sufficiente che un solo elemento vada in crisi per avere il collasso). Ovviamente stiamo parlando di eventuali difetti locali e non generalizzati su tutta la costruzione. Se tutti i materiali sono scadenti in tutta la costruzione è un grosso guaio, ed è comunque difficile dire se sta peggio un edificio in muratura o uno a telaio in cemento armato, in cui magari aggiungiamo difetti nei dettagli d’armatura nei nodi o negli ancoraggi….

5. Molti operatori che sono intervenuti sul campo, hanno riscontrato tracce di interventi che avrebbero indebolito le strutture. Ti risulta?

Nei rilievi post-terremoto svolti in modo rapido in condizioni di emergenza, non sempre si riesce a capire con chiarezza la storia dell’edificio e quali modifiche siano state apportate, in che tempi e modalità, ma a volte è evidente che alcune modifiche apportate al fabbricato siano state di detrimento alla sicurezza.  Sovente si tratta di interventi fatti con totale inconsapevolezza degli effetti sulla sicurezza e con finalità legate puramente alla destinazione d’uso, all’utilizzo e alla ridistribuzione degli spazi. In altri casi, più rari, si tratta di situazioni di interventi fatti anche con finalità “strutturali” magari anche con l’idea di conseguire un incremento di sicurezza, ma che in realtà sono dannosi o inefficaci. Un classico esempio, spesso discusso in letteratura anche sulla base dei rilievi post-sisma italiani da Umbria-Marche 1997 in poi, è l’inserimento di elementi strutturali nuovi, rigidi e pesanti (come ad esempio la sostituzione di un solaio in legno con un solaio in cemento armato) in un edificio con muratura molto debole (ad esempio muratura in pietrame irregolare con malta scadente), senza che la muratura venga consolidata in modo adeguato. C’è stato un periodo, successivo ai terremoti del Friuli e dell’Irpinia, in cui si sosteneva molto il fatto che i diaframmi (ovvero i solai e i tetti) rigidi aumentano l’iperstaticità, ovvero la robustezza della costruzione e il cosiddetto “comportamento a scatola”, per cui si cercava di riprodurre in strutture esistenti qualcosa che è relativamente semplice realizzare e i cui effetti sono ben controllabili nelle nuove costruzioni,  ma che in una costruzione esistente ha problemi realizzativi (nel collegamento tra elementi nuovi e elementi esistenti) e strutturali  (possibile aumento delle sollecitazioni nella muratura). E’ importante notare che l’efficacia degli interventi viene messa alla prova da terremoti che hanno luogo successivamente, e in alcune zone dell’Italia centrale è stato ed è possibile ora trarre indicazioni di questo tipo. Nel terremoto dell’Umbria-Marche del 1997 è stato possibile osservare diverse situazioni problematiche in edifici in cui erano stati sostituiti i solai esistenti con solai più pesanti e rigidi.

Permettimi però di aggiungere un ulteriore commento. Dal punto di vista scientifico, il fatto che un intervento sia “dannoso” ovvero indebolisca la struttura rispetto al non-intervento è verificabile sperimentalmente solo se c’è il riscontro di cosa succederebbe all’edificio senza intervenire e cosa succederebbe a seguito dell’intervento. Questo tipo di confronto nella stragrande maggioranza dei casi non c’è o non è possibile farlo, a meno di casi fortunatissimi di edifici quasi identici costruiti sullo stesso suolo in cui uno è stato rinforzato e l’altro no, oppure sono stati rinforzati con metodi diversi. Oppure, come ad alcuni ricercatori capita di fare, quando si confrontano prove sperimentali su tavola vibrante. Quindi in generale io sono sempre piuttosto scettico di fronte a interpretazioni date sulla base di rilievi puramente visivi, senza il necessario approfondimento dei dettagli e senza una analisi quantitativa svolta in modo competente.
Mi sento di poter dire (e so che molti colleghi hanno la stessa opinione) che in moltissime situazioni viste in centro Italia il crollo della costruzione sarebbe avvenuto e avverrebbe a prescindere dal tipo di solaio, leggero o pesante, rigido o flessibile, in virtù della pessima qualità della muratura, che mi sembra sia stato il problema principale.

6. Come ha giocato nell’aggravamento del danno (laddove si è verificato) il ripetersi degli scuotimenti forti? Si tratta di qualcosa che è implicitamente previsto, e contrastato, dalle norme sismiche? Viceversa, come spieghi i numerosi casi di assenza quasi totale di danno?

Lo scuotimento ripetuto aggrava tanto più il danno quanto più il danno generato dalla scossa precedente è grave. Sembra un’affermazione un po’ banale, però nella sostanza è quello che succede. Per esempio, se in un edificio in muratura una prima scossa genera solo poche fessure non molto ampie e di un certo tipo (ad esempio fessure orizzontali nei muri, che si richiudono dopo la scossa per effetto del peso proprio), l’edificio non ha perso molta della sua capacità resistente; quindi se verrà assoggettato a scuotimenti ripetuti, meno intensi della prima scossa, è possibile che il danno non si aggravi eccessivamente, e se verrà assoggettato ad uno scuotimento più forte della prima scossa avrà una resistenza uguale o di poco inferiore a quella che avrebbe se la prima scossa non ci fosse stata. Se invece una scossa porta a sviluppare fessure diagonali (le cosiddette fessure “per taglio”) o fessure verticali con distacchi, la parte lesionata ha perso una quota significativa della sua capacità di resistere e lo scuotimento ripetuto successivo può portare al degrado progressivo e al crollo anche se le scosse successive subite dall’edificio, singolarmente sono magari meno forti della prima. E’ qualcosa di visibile e riproducibile anche in laboratorio.

Detto questo, ci sono tipologie di costruzioni e di elementi strutturali che sono più o meno sensibili al ripetersi dell’azione sismica. Quando gli ingegneri sismici parlano di “duttilità” della struttura o di un meccanismo si riferiscono anche a questo, cioè alla capacità di una struttura di resistere a ripetuti cicli di sollecitazione ben oltre la soglia della prima fessurazione o del primo danno visibile, senza arrivare al crollo. Una costruzione moderna ben progettata in cemento armato è una struttura di questo tipo, ad esempio. La muratura non armata, invece è più suscettibile al danno indotto dalla ripetizione di cicli di sollecitazione post-fessurazione. Come conseguenza, gli edifici esistenti in muratura una volta danneggiati da una prima scossa sono più vulnerabili a scosse successive. Se invece la prima scossa non genera danni di rilievo la sicurezza della costruzione si mantiene, nella maggior parte dei casi, più o meno inalterata e questo rende conto del fatto che anche numerose costruzioni in muratura hanno resistito alle scosse ripetute. Purtroppo a volte il danno può non essere chiaramente visibile. Il danno nella muratura si origina sotto forma di micro-fessure (non visibili ad occhio nudo) che si sviluppano poi in macro-fessure. Se in una prova di laboratorio si spinge un campione di muratura ad una condizione molto prossima all’innesco delle macro-fessure ma si rimuove il carico prima del loro sviluppo, può succedere che in una fase di carico successiva la macro-fessura si formi ad un livello di carico inferiore a quello raggiunto nella prima fase. Può quindi succedere che un edificio che ha resistito ad una scossa violenta senza danni apparenti si lesioni visibilmente per una scossa successiva meno violenta della prima.

Mi chiedi se il comportamento della struttura a scosse ripetute sia implicitamente considerato nelle norme sismiche: la risposta è affermativa, almeno per alcuni aspetti. Ad esempio, il rispetto di certi dettagli costruttivi nel cemento armato e l’applicazione di certe regole nel dimensionamento delle sezioni e dell’armatura hanno proprio anche questo scopo, di rendere la struttura meno suscettibile al danno sotto azioni ripetute. Inoltre strutture meno duttili, come quelle in muratura non armata, vengono progettate con azioni sismiche di progetto più elevate anche per “compensare” la loro maggiore suscettibilità al degrado dovuto all’azione ripetuta. Ci sono però alcuni aspetti del problema della resistenza e dell’accumulo del danno sotto scosse ripetute che restano ancora da esplorare e costituiscono un argomento di ricerca ancora abbastanza “di frontiera”. In particolare, se è vero che incominciano ad essere disponibili dei modelli concettuali per valutare come cambia il rischio (ovvero la probabilità di collasso o di danneggiamento) di un edificio o di un insieme di edifici al trascorrere del tempo e al susseguirsi delle scosse sismiche, questi modelli vanno ancora notevolmente affinati per dare risultati che siano quantitativamente affidabili.

7. Mi sembra di capire che la varietà delle casistiche degli edifici in muratura, almeno in Italia, sia veramente elevata: tanto elevata che conoscerle richiede un approccio simile a quello della medicina dove ogni caso rappresenta quasi un fatto singolo. Forse non esiste quindi una terapia universale ogni caso richiede una cura particolare: è corretto? E se sì, visto che le condizioni edilizie di diverse zone dell’Appennino (e non solo) sono simili a quella delle zone colpite nel 2016, ci si devono attendere distruzioni analoghe?

Questo paragone con la medicina calza benissimo, ci sono veramente tante analogie tra il lavoro del tecnico che deve capire cosa fare di un edificio esistente e quello del medico che cerca di fare una diagnosi e di individuare una terapia corretta su un paziente. Dal punto di vista tecnico non esiste una terapia universale e a nessun (bravo) medico verrebbe in mente di applicare un protocollo terapeutico senza l’anamnesi, l’esame obiettivo, eventuali esami strumentali o di laboratorio e la formulazione di una diagnosi (che ci dice quale è la malattia /stato di salute del paziente, e quindi ci definisce di cosa ha bisogno). Il bravo tecnico segue un percorso analogo per pervenire alla valutazione della sicurezza e alle possibili ipotesi di intervento (o non intervento). Certo è possibile e doveroso, come avviene a livello sanitario, definire delle strategie e delle politiche di prioritizzazione e allocazione di risorse per far sì che complessivamente il rischio sismico nel nostro paese diminuisca. E’ certo che là dove l’edilizia vecchia non è stata soggetta a manutenzione, o a sola manutenzione estetica e funzionale senza rinforzo strutturale ci si possono attendere distruzioni analoghe a quelle viste nel 2016 in occasione di eventuali futuri sismi di magnitudo comparabile. Questo vale sia per l’edilizia pubblica che privata. Là dove invece si è intervenuti o si interverrà in modo consapevole ponendo attenzione al problema della sicurezza sismica, l’esperienza degli ultimi terremoti ci insegna che il livello di danno da attendersi sarà più contenuto.

Permettimi di concludere questa intervista con qualche commento di tenore non prettamente tecnico-ingegneristico. La possibilità di ridurre il rischio sismico in Italia dipende da tanti fattori, che vanno dal modo con cui la politica affronta il problema dei rischi naturali, al modo con cui i tecnici, singolarmente e collettivamente, interagiscono e comunicano con la politica, al modo con cui si comunica la presenza del rischio alla popolazione, al conseguente modo con cui il cittadino compie le sue scelte quando acquista o deve decidere di manutenere un immobile. Secondo me è necessario arrivare progressivamente ad un sistema in cui il cittadino riconosca che è nel suo interesse perseguire una maggiore sicurezza sismica, spendendo inizialmente un po’ di più perché ne avrà un ritorno in futuro non solo in termini di sicurezza ma anche di beneficio economico, ad esempio di valore del proprio immobile. L’iniziativa del Sismabonus è sicuramente un primo passo in questa direzione, ma dovranno essere fatti altri passi. L’obiettivo, certamente non facile da raggiungere, dovrebbe essere che il livello di sicurezza di una costruzione abbia un chiaro corrispettivo in termini di valore economico, e credo che questo funzionerebbe sia per il piccolo proprietario che per gli investitori immobiliari. So che questo spaventa alcuni, ma personalmente credo che, almeno per quel che riguarda il patrimonio immobiliare di proprietà privata, non ci siano altre soluzioni per arrivare nel giro di qualche decennio ad una concreta e diffusa riduzione del rischio sismico in Italia.

 

 

 

 

 

Achille e la tartaruga, ovvero la riduzione di vulnerabilità e rischio sismico in Italia (colloquio con Gian Michele Calvi)

Come dopo ogni terremoto distruttivo in Italia, anche dopo la sequenza sismica del 2016-2017 si sono risvegliati i dibattiti sul rischio sismico, sulla messa in sicurezza degli edifici, i relativi costi, ecc.
Ne discutiamo con Gian Michele Calvi, professore allo IUSS di Pavia e Adjunct Professor alla North Carolina State University. Calvi è stato il fondatore della Fondazione Eucentre e della ROSE School a Pavia; è attualmente uno dei Direttori della International Association of Earthquake Engineering. Ha coordinato, fra le altre cose, il Gruppo di Lavoro che ha redatto il testo dell’Ordinanza PCM 3274 del 2003, che ha innovato il sistema della normativa sismica in Italia. È stato presidente e componente della Commissione Grandi Rischi, sezione rischio sismico. È stato imputato, e successivamente assolto “perché il fatto non sussiste”, nel cosiddetto “Processo Grandi Rischi”.

Ha sempre lavorato ad innovare la progettazione sismica, concentrandosi inizialmente sulle strutture in muratura e sui ponti, l’isolamento e la progettazione basata sugli spostamenti negli ultimi vent’anni. Ha pubblicato un gran numero di articoli sull’argomento e ricevuto vari riconoscimenti internazionali.

C’è qualcosa di nuovo all’orizzonte, secondo te?

Sai bene quanto me che si tratta di risvegli a carattere cronico, che si ripetono in modo analogo da più di un secolo. Nel caso specifico mi pare che ci siano ancora più chiacchiere e meno fatti. Incluso la fantomatica “Casa Italia” di cui confesso di non capire nulla, obiettivi strategia tattica risultati.
Gli unici momenti in cui ho percepito fatti veri, in modo diretto o attraverso lo studio della cronaca sono stati:

  • l’incredibile sviluppo scientifico e tecnico che ha seguito il terremoto di Messina del 1908;
  • la strategia di ricostruzione dopo il Friuli, in cui si è privilegiato il settore produttivo rispetto al residenziale;
  • la rivoluzione di norme e mappa di pericolosità dopo il terremoto di San Giuliano di Puglia del 2002;
  • la costruzione di 186 edifici isolati in poco più di sei mesi dopo il terremoto di L’Aquila.

So bene che gli ultimi due casi possono apparire come auto citazioni, ma ciò non toglie nulla ai fatti. Quello che ora mi piacerebbe vedere è un cambiamento della politica di intervento dopo un evento, con la creazione di incentivi che favoriscano l’azione dei privati ed il progressivo passaggio dallo Stato al sistema assicurativo della copertura delle perdite.
Spero, senza ottimismo. Continua a leggere

Achilles and the Turtle, or the reduction of vulnerability and seismic risk in Italy (interview with Gian Michele Calvi

(translated from the Italian by Google Translate, reviewed)

As after every destructive earthquake in Italy, the sequence of 2016-2017 has awakened the debates on seismic risk, on the safety of buildings, the relative costs, etc.
We discuss this with Gian Michele Calvi, who is professor at the IUSS of Pavia and Adjunct professor at North Carolina State University. He was the founder of the Eucentre Foundation and the ROSE School in Pavia; he is currently one of the directors of the International Association of Earthquake Engineering.
He coordinated, among other initiatives, the working group that drew up the text of the Ordinance PCM 3274 of 2003, which innovated the system of the seismic building code in Italy. He was president and member of the Commission of Major Risks, seismic risk section. He was accused, and subsequently acquitted “because the fact does not exist”, in the so-called “Great risks” or L’Aquila trial.
He has always worked to innovate the seismic design, concentrating mainly on masonry structures and bridges, isolation and design based on displacements over the last twenty years. He has published a large number of articles on the subject and received various international recognitions.

Is there something new on the horizon, according to you?

You know as well as me that there are chronic awakenings, which are repeated in a similar way since more than a century. In the specific case it seems to me that there is even more talking and less facts. Including the fancy “Casa Italia”, of which I confess I do not understand anything: tactics, strategy, goals.
The only moments in which I perceived real facts, directly or through the study of the history were:

  • the incredible scientific and technical development that followed the Messina earthquake of 1908;·
  • the rebuilding strategy after Friuli, where the production sector was more privileged than the residential one;
  • the revolution of codes and seismichazard maps the earthquake of San Giuliano of Puglia in 2002;
  • the construction of 186 isolated buildings in just over six months after the earthquake in L’Aquila.I know that the last two cases may appear as self-quotes, but that does not detract from the facts.
    What I would like to see now is a change in the policy of intervention after an event, creating incentives for private action and progressive transition from the state to the loss coverage insurance system.
    Hope, without optimism.

Continua a leggere

Che cosa vuol dire “antisismico”? What does “anti-seismic” mean? (Colloquio con Rui Pinho)

English version below

Il termine “antisismico” è entrato da qualche tempo a far parte del linguaggio corrente dei media: si legge ad esempio che “il 70% degli edifici italiani non è antisismico”; “9 scuole su 10 non sono antisismiche” (si veda ad esempio un recente articolo pubblicato dall’Espresso che fornisce la possibilità di interrogare il database delle scuole italiane, gestito dal MIUR, ottenendo la risposta al quesito se la singola scuola sia o meno antisismica – ne discutiamo più avanti). Il termine, tuttavia, assume differenti significati a seconda di chi lo usa: l’immaginario collettivo lo percepisce, più o meno, come una sorta di sistema binario che si risolve per l’appunto in un sì o un no (antisismico uguale “a prova di terremoto”): l’ingegnere lo intende in un modo un po’ diverso, e preferisce parlare ad esempio di “quanto antisismico”.
Ne discutiamo con Rui Pinho, ingegnere sismico, professore associato all’Università di Pavia, per cinque anni segretario generale dell’iniziativa internazionale GEM (Global Earthquake Model) e che svolge ora l’incarico di Direttore Scientifico della Fondazione Eucentre di Pavia. Continua a leggere

Sopra i nostri piedi – Above our feet (Massimiliano Stucchi)

(english version below)

Questo titolo prende manifestamente spunto da quello del volume di Alessandro Amato: “Sotto i nostri piedi”, arrivato alla seconda ristampa (con integrazione sulla sequenza sismica del 2016 in Centro Italia) e in distribuzione nelle edicole con “Le Scienze”, dopo che l’autore è stato finalista del Premio Letterario Galileo 2017.

Il volume di Amato tratta di sismologia, previsione dei terremoti, aspetti scientifici, culturali e politici. I sismologi si occupano di descrivere, nel miglior modo possibile, come si generano i terremoti e come le onde sismiche si propagano nella Terra; il tutto, appunto, sotto i nostri piedi. Alcuni sismologi si occupano, in una specie di terra di confine dove operano anche alcuni ingegneri, di descrivere come le onde sismiche interagiscono con la superficie del terreno e con gli edifici: quindi, di fornire la descrizione del moto del suolo nelle modalità più adatte all’ingegneria sismica. Questa terra di confine si chiama in inglese “engineering seismology”, le cui possibili traduzioni italiane suonano tutte male. Una Sezione dell’INGV, quella di Milano, si occupa in prevalenza di questi aspetti ed era denominata “Sismologia Applicata”; tempo fa aveva ricercato una collaborazione stretta, istituzionale, con la Fondazione Eucentre di Pavia, alla cui costituzione INGV aveva peraltro contribuito come socio fondatore, sia pure con poco merito e ancor meno investimento. Continua a leggere

I danni dei terremoti: chi paga? (Patrizia Feletig e Enzo Boschi)

Patrizia Feletig (laureata in economia, esegue analisi accurate della politica energetica, delle ricadute economiche delle moderne tecnologie  e dei grandi temi della moderna società come i disastri naturali e non. Scrive su importanti giornali nazionali e internazionali come free lance); e
Enzo Boschi (geofisico, già professore ordinario all’Università di Bologna, a lungo Presidente dell’INGV. Non ha bisogno di ulteriori presentazioni);

intervengono a proposito dei costi delle catastrofi, che tradizionalmente in Italia si riversano sullo Stato e quindi su tutti noi, in modo quasi automatico. Il recente Decreto per la ricostruzione porta questi temi ancora più in evidenza.

Una percentuale molto consistente del nostro grande debito pubblico è ascrivibile ai disastri naturali, sopratutto terremoti ed alluvioni, che frequentemente colpiscono il nostro fragile territorio (nella tabella sono riassunti i costi dei terremoti).

schermata-2016-10-12-a-17-28-19

Questo ci mette in una situazione di inferiorità economica rispetto ad altri Paesi geologicamente stabili.
Può forse sembrare paradossale ma i terremoti che nell’ultima decina di anni hanno funestato l’Italia sono da considerare moderati. Potrebbero verificarsi situazioni molto più devastanti che potrebbero mettere letteralmente in ginocchio l’economia del Paese.
È assolutamente necessario correre ai ripari: un passaggio assolutamente necessario è il ricorso intelligente alle Assicurazioni in modo da ottenere contemporaneamente il coinvolgimento informato dei cittadini e i contributi dello Stato, evitando gli enormi e assurdi sprechi degli ultimi cinquant’anni.

D’accordo: ma che cosa proponete allora?

Il ragionamento che qui proponiamo è stimolato dalle scene di disperazione e di distruzione che, ancora una volta, abbiamo dovuto vedere il 24 agosto e che tutti si augurano, ancora una volta, di non vedere più. E’ arrivato il decreto sulla ricostruzione delle zone colpite, che contiene l’impegno di risarcire tutti i proprietari di case danneggiati anche quelli di seconde case.
I danni si aggirano sui 4 miliardi di euro ma si tratta di una prima stima da aggiornare dopo la valutazione definitiva che arriverà a metà novembre assieme alla richiesta all’UE di un dossier per l’attivazione del fondo emergenze.
Benvenuto, il decreto, ma non risolutivo della questione: come risarcire i danni? questione che si ripropone puntualmente all’indomani di una calamità naturale.
Qual è il modo meno impegnativo per le casse pubbliche di coprire i sinistri da emergenze ambientali? Non sono bazzecole; secondo lo studio di Cineas le sole alluvioni comportano costi annui pari allo 0,2% del PIL.

Continua a leggere

L’importanza dei controlli e del ruolo dello Stato nella riduzione del rischio sismico (Alessandro Venieri)

E’ vero: sono pienamente d’accordo con l’articolo di Massimiliano Stucchi “le colpe degli altri”, non bisogna sempre piangersi addosso e delegare agli altri, allo Stato in genere, compiti a cui lo Stato stesso non riesce poi ad assolvere. Sicuramente è soprattutto un problema di carattere culturale, quindi di lunga e difficile risoluzione, ma il problema rimane, i terremoti ci saranno e alcuni saranno ancora più forti di quello dell’Aquila, dell’Emilia e di Amatrice, perciò un cambiamento dovremo pur farlo pensando ai nostri figli e alle future generazioni. Continua a leggere