Qualche considerazione a margine del terremoto in Turchia (‘the builder was at fault’, cit.) di Gian Michele Calvi

Pubblichiamo volentieri questa riflessione di Gian Michele Calvi sui terremoti del 6 febbraio, che contiene anche una poesia di C. Richter, ricordando che si è trattato di due terremoti, poco distanti nello spazio e nel tempo come indica la figura. E questo fatto ha contribuito, in particolare per le zone comprese fra i due epicentri, ad aumentare la distruzione e le vittime.

Gian Michele Calvi, professore allo IUSS di Pavia e Adjunct Professor alla North Carolina State University. Calvi è stato il fondatore della Fondazione Eucentre e della ROSE School a Pavia. Ha coordinato, fra le altre cose, il Gruppo di Lavoro che ha redatto il testo dell’Ordinanza PCM 3274 del 2003, che ha innovato il sistema della normativa sismica in Italia. È stato presidente e componente della Commissione Grandi Rischi, sezione rischio sismico.

Schermata 2023-02-15 alle 15.30.32

Charles Richter (si veda più sotto una sua poesia) avrebbe voluto diventare un astronomo.
Ma era il tempo della grande depressione e nemmeno con un dottorato a Caltech era facile rifiutare una posizione all’appena costituito Seismo Lab, diretto allora da Harry Wood (quello del sismometro Wood-Anderson).
In pochi anni Richter[1] osserva che “sarebbe desiderabile avere una scala per misurare le scosse in termini di energia rilasciata, indipendentemente dagli effetti che possono essere indotti in un particolare punto di osservazione”, propone una scala e decide di chiamarla magnitudo, il termine usato per classificare la luminosità delle stelle.
Richter certo non immaginava quante volte la parola magnitudo sarebbe stata usata male.

“Professore di che magnitudo è la scossa che avete applicato alla tavola?” È la domanda più ricorrente quando un giornalista assiste alla simulazione della risposta di una struttura costruita su tavola vibrante. Ma alla tavola si applica un moto, non un’energia; un moto che può essere originato da rilasci di energia (e quindi magnitudo) molto diversi, se originati a distanze diverse, o amplificati localmente da situazioni orografiche o stratigrafiche diverse. Continua a leggere

Il ruolo dei tecnici nell’emergenza post-sisma: l’importanza della cultura della prevenzione sismica nella formazione scolastica e universitaria (di Michele Galizia)

Riceviamo e pubblichiamo volentieri questo contributo sul tema delle verifiche degli edifici a seguito di un terremoto

Michele Galizia si è laureato in ingegneria civile edile a Padova nel 1980. E’ stato allievo del prof. Alberto Bernardini, il coordinatore del Gruppo di lavoro, costituito dal Gruppo Nazionale per la Difesa dai Terremoti del CNR e dal Servizio Sismico Nazionale del Dipartimento della Protezione Civile, che ha redatto la prima scheda AeDES (Agibilità e Danno Emergenza Sismica) dopo 3 anni di lavoro nel 2000. Ha esercitato la libera professione a Padova e a Venezia.
Come ingegnere volontario ha effettuato le verifiche degli edifici colpiti dal sisma in Irpinia nel 1980, in Abruzzo nel 2009, in Emilia nel 2012 e in Centro Italia nel 2016 e 2017.
Dalla primavera 2021 è in pensione.

Il rischio sismico in Italia è elevato e diffuso.
I recenti e devastanti terremoti che hanno colpito l’Abruzzo nel 2009, l’Emilia nel 2012 e il Centro Italia nel 2016 hanno causato danni elevati a territori molto vasti, con decine di Comuni colpiti, centinaia di morti e decine di migliaia di cittadini coinvolti.
Sono ingegnere civile edile e ho fatto le verifiche degli edifici colpiti dal sisma in Irpinia nel 1980, in Abruzzo nel 2009, in Emilia nel 2012 e in Centro Italia nel 2016 e nel 2017.
Durante le verifiche, a cui assistevano in sicurezza i proprietari degli edifici, ho visto nei loro volti e nelle loro parole la sofferenza e la paura causate dal terremoto. Queste persone alloggiavano temporaneamente da parenti, o nella seconda casa lontana dalla zona colpita, o in albergo oppure in tenda. Dai loro sguardi e dalle loro parole ho compreso che lasciare la propria abitazione colpita dal terremoto e iniziare una altra vita, dove si dipende in tutto e per tutto dagli altri, è una delle peggiori disgrazie che possano capitare.

Allora il compito di noi tecnici era quello di fare prima possibile la verifica dell’immobile, mediante la compilazione della scheda AeDES (Agibilità e Danno Emergenza Sismica, https://tegris2013.files.wordpress.com/2022/03/scheda-aedes.pdf), per stabilire se era agibile e quindi permettere alle persone di tornare alle loro abitazioni e a una vita normale, oppure inagibile o agibile parzialmente per attivare le procedure dello Stato per ridare una abitazione a questi nostri sfortunati connazionali. In sintesi: fare presto e fare bene. E’ importante rilevare che si tratta di un compito di grande responsabilità umana e professionale, perché “La valutazione di agibilità in emergenza post-sismica è una valutazione temporanea e speditiva – vale a dire formulata sulla base di un giudizio esperto e condotta in tempi limitati, in base alla semplice analisi visiva ed alla raccolta di informazioni facilmente accessibili – volta a stabilire se, in presenza di una crisi sismica in atto, gli edifici colpiti dal terremoto possano essere utilizzati restando ragionevolmente protetta la vita umana. L’esito Agibile va scelto, quindi, se si soddisfa pienamente la precedente definizione”. In media il sopralluogo con esame visivo esterno e interno dell’edificio e la compilazione della scheda AeDES (3 pagine + 1 di istruzioni) impegnavano la squadra composta da 2 tecnici per circa 60 minuti.

In Emilia, colpita il 20 e il 29 maggio 2012, sono stati impegnati circa 1.000 tecnici volontari in turni settimanali con oltre 90.000 verifiche AeDES che hanno permesso in 10 settimane, dall’inizio di giugno ai primi di agosto 2012, di verificare tutti gli edifici colpiti dal sisma.
Dopo questa emergenza sismica nazionale, Il Dipartimento Nazionale di Protezione Civile, con il DPCM dell’8 luglio 2014, ha stabilito che le verifiche di agibilità (compilazione della scheda AeDES) sia compito di tecnici appositamente formati con corsi specifici a livello regionale e organizzati nel Nucleo Tecnico Nazionale.

Il DPCM nelle premesse dice: “Considerato che durante la gestione dell’emergenza post-sismica, nell’ambito delle attività di assistenza alla popolazione, è necessario effettuare speditamente il rilievo del danno e la valutazione di agibilità delle costruzioni, finalizzati al rientro tempestivo della popolazione nelle proprie abitazioni ed alla salvaguardia della pubblica incolumità, con l’obiettivo di ridurre i disagi dei cittadini e gli ulteriori possibili danni; Considerata l’esigenza, maturata in seguito agli eventi sismici degli ultimi anni, di migliorare il sistema di gestione delle operazioni
tecniche di rilievo del danno e valutazione dell’agibilità degli edifici nella fase di emergenza post-sisma, mediante la creazione di un sistema strutturato che preveda l’istituzione di un elenco di tecnici appositamente formati;…”

La prima considerazione che mi venne in mente allora fu che mancava una disposizione transitoria, da utilizzare in una emergenza sismica di rilievo nazionale come l’Emilia. Da tener presente che trattandosi di tecnici volontari, che potrebbero essere non disponibili per vari motivi (lavorativi, familiari, personali) è necessario avere una potenziale disponibilità almeno doppia di quella necessaria, quindi 2.000 – 2.500 tecnici, oltre qualche centinaio di tecnici di supporto come Data Entry. Ma sarebbero stati necessari circa 6 anni, al ritmo di 5-6 corsi con 60 partecipanti all’anno.

Il 24 agosto e il 30 ottobre 2016 c’è stato il terremoto in Italia Centrale. Il Dipartimento Nazionale della Protezione Civile si è trovato con un numero insufficiente di tecnici abilitati AeDES. Nella mia Regione Veneto c’erano in totale 44 ingegneri abilitati AeDES. E coloro che non avevano potuto partecipare al corso AeDES per lo scarso numero di posti a disposizione o per impegni di lavoro, non sono stati utilizzati nella prima fase dell’emergenza. Ma le verifiche da fare erano circa 200.000 e bisognava trovare una soluzione. Mi sarei aspettato una norma transitoria che permettesse di utilizzare i tecnici che avevano fatto le verifiche AeDES in Emilia nel 2012 e in Abruzzo nel 2009.

La soluzione è stata di approvare rapidamente una nuova scheda, la FAST (Fabbricati Agibilità Sintetica post-Terremoto, ALL. 2), che poteva essere compilata da tecnici che dichiaravano ”di aver frequentato il corso AeDES oppure di aver operato come verificatore per precedenti esperienze sismiche oppure di essere esperto in ambito strutturale senza esperienza sul campo”. Da tener presente che la scheda FAST (1 pagina + 1 di istruzioni) è una sintesi della scheda AeDES con gli stessi criteri di valutazione:

” Esito FAST Finale: va scelta una sola delle opzioni riportate. Il giudizio va emesso tenendo conto che: la valutazione di agibilità in emergenza post-sismica è una valutazione temporanea e speditiva – vale a dire formulata sulla base di un giudizio esperto e condotta in tempi limitati, in base alla semplice analisi visiva ed alla raccolta di informazioni facilmente accessibili – volta a stabilire se, in presenza di una crisi sismica in atto, gli edifici colpiti dal terremoto possano essere utilizzati restando ragionevolmente protetta la vita umana. Il giudizio «Agibile» significa che a seguito di una scossa successiva, di intensità non superiore a quella per cui è richiesta la verifica, sia ragionevole supporre che non ne derivi un incremento significativo del livello di danneggiamento generale. L’esito «Edificio agibile» va scelto, quindi, se si soddisfa pienamente la precedente definizione. Invece, se le condizioni di rischio derivanti dallo stato di danneggiamento dello stesso edificio non sono considerabili basse, si opterà per l’esito «Edificio non utilizzabile».“

L’esito ‘edificio non utilizzabile’ comportava che poi l’edificio doveva ulteriormente essere verificato dai tecnici AeDES, che ne accertavano l’inagibilità totale o parziale e quindi dare inizio all’iter per la ricostruzione da parte dello Stato. In media il sopralluogo con esame visivo esterno e interno dell’edificio e la compilazione della scheda FAST impegnava la squadra composta da 2 tecnici per circa 40 minuti. Quindi centinaia di tecnici volontari, me compreso, sono state impegnate per le verifiche FAST. Se la verifica con la scheda FAST dava esito di edificio agibile il cittadino rientrava a casa e la pratica era conclusa. Se la verifica FAST dava esito di edificio non utilizzabile il cittadino restava nella soluzione abitativa provvisoria (parenti, seconda casa o albergo sulla costa marchigiana) e doveva attendere laverifica dei tecnici AeDES, a seguito della quale sarebbe iniziato l’iter della ricostruzione da parte dello Stato.
Quindi allungamento dei tempi del ritorno alla normalità e i cittadini amareggiati per il fatto che la loro abitazione non veniva verificata dai tecnici AEDES, ma dai tecnici FAST. Ho fatto 3 turni settimanali di verifica FAST in Centro Italia (dicembre 2016 nelle Marche, febbraio 2017 in Umbria e maggio 2017 nelle Marche) e in ogni turno di 30 tecnici volontari c’erano 4-6 tecnici AeDES e 24-26 tecnici FAST.
E ogni collega AeDES mi confermava che nella sua regione i tecnici AeDES erano poche decine.

La necessità di aumentare le verifiche AeDES è stata risolta in questo modo: il cittadino si doveva rivolgere ad un tecnico di sua fiducia, per la compilazione della scheda AeDES e la presentazione dell’istanza per la ricostruzione. Il costo del tecnico veniva aggiunto nelle spese rimborsate dallo Stato. Da notare che prima in tutti i terremoti tutti gli interventi di verifica di agibilità sono stati fatti da tutti i tecnici a titolo volontario e gratuito. Tanti di noi hanno anche rinunciato al rimborso delle spese dell’auto e del vitto. Da notare anche che è venuta a mancare la terzietà del tecnico, perché ai tecnici AeDES è fatto divieto, per ovvi motivi, di lavorare nella provincia dove hanno fatto le verifiche.
Questa situazione di mancanza di tecnici AeDES è continuata negli anni successivi.
Recentemente, a seguito di una circolare dell’11 novembre 2021 della STN (Struttura Tecnica Nazionale, cioè l’insieme dei Consigli Nazionali degli ingegneri, degli architetti, dei geologi, dei geometri e dei periti agrari) la FOIV (Federazione Ordine Ingegneri del Veneto) ha comunicato agli Ordini provinciali degli ingegneri del Veneto l’attivazione di un corso AeDES di 60 ore per 60 partecipanti nel mese di febbraio 2022.

Siamo ancora lontani dalla lettera e dallo spirito del DPCM dell’8 luglio 2014 e dalle Indicazioni Operative del Dipartimento Nazionale della Protezione Civile del 29 ottobre 2020:
“Le esperienze anche recenti di gestione delle emergenze sismiche su base nazionale e regionale ha confermato che l’esigenza prioritaria è quella di poter disporre di numeri elevati di tecnici formati per il rilievo con schede Aedes.”
La mia modesta opinione è che sia necessario che la cultura della prevenzione sismica e la compilazione della scheda AeDES siano parte integrante dei programmi delle facoltà universitarie di ingegneria civile, di architettura, di geologia, e dagli istituti superiori per geometri e periti agrari. In tal modo in emergenza sismica ci sarebbe il numero adeguato di tecnici AeDES per la verifica in tempi rapidi di tutti gli edifici colpiti dal sisma, in modo da far rientrare la popolazione nelle proprie abitazioni in caso di agibilità e, in caso di inagibilità, di attivare rapidamente l’iter per la ricostruzione.

Quando le azioni sismiche di progetto vengono superate: colloquio con Iunio Iervolino

La stampa riporta, con attenzione crescente, informazioni sull’avvenuto superamento – in occasione di terremoti forti in Italia – delle azioni sismiche di progetto previste dalla normativa sismica. Il confronto fra le azioni sismiche di progetto, previste dalle attuali NTC, e i valori registrati in occasione di terremoti forti in Italia ha una storia abbastanza recente. Questo confronto è reso possibile dal fatto che le azioni sismiche di progetto sono espresse oggi in termini direttamente confrontabili con quelli delle registrazioni stesse, per esempio mediante spettri di risposta, cosa che non avveniva in passato.
Spesso l’informazione sui superamenti è accompagnata – nella stampa o da commenti inesperti – da un giudizio sommario di inadeguatezza delle norme sismiche e, a volte, dei modello di pericolosità sismica sui quali si appoggiano. Questo giudizio rischia di gettare un’ombra anche sulla sicurezza degli edifici costruiti secondo quelle norme.
Ne parliamo oggi con Iunio Iervolino, ingegnere, professore ordinario per il settore scientifico-disciplinare Tecnica delle Costruzioni presso l’Università Federico II di Napoli, dove coordina anche il dottorato di ricerca in Ingegneria Strutturale, Geotecnica e Rischio Sismico. Tra le altre cose ha conseguito un dottorato in Rischio Sismico ed è stato allievo di C. Allin Cornell alla Stanford University in California. Da circa vent’anni si occupa di ricerca nel campo della pericolosità e del rischio sismico delle costruzioni. Ha recentemente scritto, per Hoepli, Dinamica delle Strutture e Ingegneria Sismica.

Da diversi anni ti sei occupato dei problemi di cui al titolo di questo colloquio. Ricordo un tuo lavoro in cui sostenevi che il confronto fra lo spettro di una singola registrazione con gli spettri della normativa non fosse “lecito”. In altri lavori, pubblicati con i tuoi collaboratori, hai analizzato le caratteristiche e la distribuzione dei “superamenti” in occasione dei terremoti più recenti, il cui numero è aumentato nel 2016 anche a seguito dell’aumento del numero di registrazioni (si veda l’esempio, ormai classico, delle registrazioni di Amatrice). Se non vado errato tu concludi che è impossibile evitare che si verifichino tali superamenti.

La figura è tratta da: Iervolino I., Giorgio M. (2017). È possibile evitare il superamento delle azioni di progetto nell’area epicentrale di terremoti forti? Progettazione Sismica, 8 (3), https://drive.google.com/file//1lAcn0GMlBhvSeYEjgT7U0rdRbFuhsA8x/view

Continua a leggere

Sismabonus, un aggiornamento (colloquio con Alessandro Grazzini)

I recenti provvedimenti governativi hanno aggiornato la possibilità di usufruire degli aiuti di Stato per ridurre la vulnerabilità sismica degli edifici. Abbiamo chiesto a Alessandro Grazzini, che già aveva discusso l’argomento in https://terremotiegrandirischi.com/2020/07/02/sismabonus-qualche-spiegazione-dedicata-a-chi-abita-gli-edifici-colloquio-con-alessandro-grazzini/, di illustrarci le novità.

Alessandro, ci puoi riassumere le novità introdotte, di cui hai parlato ad esempio in https://www.ediltecnico.it/79648/sismabonus-superbonus-110-classificazione-sismica/?

Il D.L. 19/05/2020 n. 34 (c.d. Decreto Rilancio a sostegno dell’economia dopo il lockdown COVID-19) ha introdotto un superbonus di detrazione fiscale al 110% da utilizzare anche per i lavori di miglioramento sismico relativi al tradizionale Sismabonus. Il Superbonus può essere sfruttato per lavori svolti dal ‪1° luglio 2020 al 31 dicembre 2021, anche se ci auguriamo una proroga in quanto gli interventi di miglioramento sismico, come sappiamo, richiedono più tempo nella pianificazione e nell’esecuzione. La novità principale consiste nel fatto che la super aliquota del 110% vale sia per gli interventi di semplice consolidamento statico (cucitura delle lesioni, consolidamento delle fondazioni, rinforzo di solai solo per fare qualche esempio) sia per gli interventi di miglioramento sismico.

Il Decreto ha eliminato la necessità di dimostrare che gli interventi abbiano portato al passaggio di una o due classi di “rischio”, come richiesto dalla normativa precedente. Non è forse un passo indietro nella direzione della prevenzione?

Continua a leggere

Sismabonus: qualche spiegazione dedicata a chi abita gli edifici (colloquio con Alessandro Grazzini)

I problemi legati alla pandemia Covid-19 hanno messo in secondo piano quelli legati alla sicurezza sismica. Tuttavia, in modo apparentemente sorprendente il Governo ha deciso di sostenere l’iniziativa del Sismabonus aumentando addirittura al 110% il valore del contributo dello Stato sotto forma di credito di imposta, abbassando il periodo di recupero del credito e agevolando la possibilità di cederlo a banche o imprese che possono farsi promotori delle ristrutturazioni.
L’iniziativa del Sismabonus nacque quando un Governo – come vedremo – cercò di rendere operativo il concetto secondo il quale è meglio spendere soldi per ridurre i danni piuttosto che per ripararli; ma, e questa fu la novità, introdusse il concetto che il problema non riguarda solo lo Stato, ossia la collettività, ma anche – almeno in parte – i proprietari. Da questo concetto, semplificando, proviene il Sismabonus.
La comunicazione al pubblico su questo argomento non è mai stata molto dettagliata. Vi sono molti articoli tecnici che ne parlano, ma è difficile trovare materiale che spieghi in modo chiaro i vantaggi. Spesso i proprietari di casa si affidano agli ingegneri in un modo simile a come un malato si affida al chirurgo che gli consiglia la soluzione migliore, che poi la praticherà nei fatti. Ora, un paziente non deve certo studiare medicina per capire ma è giusto che richieda qualche spiegazione e qualche alternativa. Questo dovrebbe avvenire anche nel caso del Sismabonus.

Ne parliamo oggi con Alessandro Grazzini, assegnista di ricerca presso il Dipartimento di Ingegneria Strutturale Edile e Geotecnica del Politecnico di Torino, esperto in consolidamento e miglioramento sismico degli edifici storici in muratura, che ha scritto diversi interventi in materia che vengono ripresi nelle sue risposte. Alla formulazione delle domande ha contribuito Carlo Fontana.
Continua a leggere

Norme tecniche per le costruzioni, modelli di pericolosità sismica e sicurezza degli edifici (colloquio con Antonio Occhiuzzi)

Anche se l’interesse maggiore di questi tempi è ovviamente per l’emergenza Covid, abbiamo ritenuto utile proporre una interessante analisi sul problema della sicurezza sismica degli edifici in relazione alle norme tecniche e ai modelli di pericolosità sismica.

Antonio Occhiuzzi, napoletano e tifoso del Napoli, è professore di Tecnica delle Costruzioni presso l’Università Parthenope. E’ laureato in ingegneria a Napoli e al MIT di Boston, ha un dottorato di ricerca in ingegneria delle strutture, materia cui si dedica da sempre.
Dal 2014 dirige l’Istituto per le Tecnologie della Costruzione (ITC), ossia la struttura del CNR che si occupa di costruzioni, con sedi a Milano, Padova, L’Aquila, Bari e Napoli.

Caro Antonio, tempo fa avevi commentato un mio post di risposta a un articolo dell’Espresso in cui veniva riproposta, come avviene periodicamente, la questione del superamento dei valori di progetto in occasione dei terremoti recenti e, di conseguenza, la presunta fallacia dei modelli di pericolosità e delle normative basate su di essi, quasi che entrambi fossero responsabili dei crolli e delle vittime. https://terremotiegrandirischi.com/2019/08/27/la-colpa-e-dei-modelli-di-pericolosita-sismica-di-massimiliano-stucchi/

Poichè in questa problematica si intrecciano aspetti sismologici e ingegneristici, ti ho invitato a approfondire la tematica. Continua a leggere

Scuole e sicurezza sismica (colloquio con Edoardo Cosenza)

Il problema della sicurezza sismica delle scuole è molto grande, in Italia come in altri paesi. Periodicamente si leggono sui media rapporti più o meno generali, ma sempre abbastanza negativi, sullo stato delle scuole in Italia. A volte il problema finisce davanti al giudice, nelle cui sentenze si discetta di “indice di sicurezza”, di probabilità di accadimento di terremoti e anche della loro prevedibilità.
Per cercare di fare il punto sulla questione, a beneficio dei non-ingegneri, abbiamo rivolto alcune domande a Edoardo Cosenza, professore di Tecnica delle Costruzioni nell’Università di Napoli Federico II, membro di numerosi Comitati che operano per la definizione delle normative e che è stato anche Assessore ai Lavori Pubblici della Regione Campania (https://www.docenti.unina.it/webdocenti-be/allegati/contenuti/1440218).
Da qualche tempo è molto attivo sui “social”, dove contribuisce egregiamente alla spiegazione degli aspetti ingegneristici ai non informati.
(Nota: le domande sono state formulate con la collaborazione di Carlo Fontana).

Il problema della sicurezza sismica delle scuole è molto sentito in Italia, forse anche a seguito del crollo della scuola di San Giuliano di Puglia nel quale, nel 2002, morirono 26 fra studenti e insegnanti. La situazione è davvero grave, nel suo complesso? Quali sono le ragioni? Continua a leggere

La vulnerabilità dimenticata (colloquio con Gianluca Valensise)

Gianluca Valensise, del Dipartimento Terremoti, INGV, Roma, è sismologo di formazione geologica, dirigente di ricerca dell’INGV, è autore di numerosi studi sulle faglie attive in Italia e in altri paesi. In particolare è il “fondatore” della banca dati delle sorgenti sismogenetiche italiane (DISS, Database of Individual Seismogenic Sources: http://diss.rm.ingv.it/diss/).  Ha dedicato oltre 30 anni della sua carriera a esplorare i rapporti tra tettonica attiva e sismicità storica, con l’obiettivo di fondere le osservazioni geologiche con l’evidenza disponibile sui grandi terremoti del passato. Di recente, con altri colleghi ha pubblicato un lavoro che propone una sorta di graduatoria di vulnerabilità dei comuni appenninici. Gli abbiamo chiesto di illustrarcelo.

Luca, tu sei un geologo del terremoto. Ti occupi di faglie attive, di sorgenti sismogenetiche, di terremoti del passato, di pericolosità sismica. Di recente ti sei avventurato, con altri colleghi, nel tema della vulnerabilità sismica del patrimonio edilizio italiano[1],[2]. Come mai questa scelta? Continua a leggere

The forgotten vulnerability (interview with Gianluca Valensise)


Gianluca Valensise, of the Earthquake Department of INGV, Rome, is a seismologist with a geological background, an INGV research manager, and the author of numerous studies on active faults in Italy and other countries. In particular he is the “founder” of Italy’s Database of Individual Seismogenic Sources (DISS, http://diss.rm.ingv.it/diss/). He has spent over 30 years of his career exploring the relationships between active tectonics and historical seismicity, with the goal of merging geological observations with the available evidence on the largest earthquakes of the past.
Recently, with other colleagues, he published a work that proposes a sort of vulnerability ranking of Apennines municipalities. We discuss it below.

Luca, you are an earthquake geologist. You deal with active faults, seismogenic sources, past earthquakes, seismic hazard. Recently, with other colleagues, you have ventured into the theme of seismic vulnerability of the Italian building heritage. How come this choice? Continua a leggere

Tutti sulla stessa faglia: un’esperienza di riduzione del rischio sismico a Sulmona (colloquio con Carlo Fontana)

Carlo Fontana è un ingegnere meccanico che vive nei pressi di Sulmona, e quindi nei pressi di una delle faglie appenniniche più pericolose: quella del Morrone. Lavora nel settore industriale e fino al 2009 non ha considerato il rischio sismico come rilevante nella sua vita. Con lui abbiamo discusso della sua esperienza di riduzione della vulnerabilità sismica della sua casa e di impegno pubblico sul tema della prevenzione nel suo territorio.

Ci racconti come era – dal punto di vista sismico – l’edificio in cui vivevi ?

L’edificio in questione è la casa paterna di mia moglie, che abbiamo deciso di ristrutturare dopo il matrimonio per renderla bifamiliare. Era composto da un nucleo originario in muratura calcarea tipica della zona, primi anni del 900, a cui è stato affiancato un raddoppio negli anni  ‘60 con muratura in blocchi di cemento semipieni. Solai in profili metallici e tavelle, scala in muratura e tetto in legno. E’ stata danneggiata e resa parzialmente inagibile dai terremoti del 7 e 11 maggio 1984. Nel 2008 era ancora in attesa del contributo per un intervento di riparazione progettato a ridosso del sisma.

Fig01

Qual è stata la molla che è scattata per indurti a rivedere il progetto relativo alla tua abitazione? Continua a leggere

Sisma Safe: come scegliere di “essere più antisismico” (colloquio con Giacomo Buffarini)

Quando un edificio può essere definito sicuro in caso di terremoto? E’ sufficiente che sia stato progettato e realizzato secondo le norme sismiche? E quali norme, visto che sono cambiate e migliorate nel corso degli anni?
Queste ed altre problematiche vengono affrontate dalla iniziativa “Sisma Safe”, un’associazione senza scopo di lucro che, attraverso un’attività informativa, vuol dare una risposta al bisogno di sicurezza individuando degli esempi positivi che siano in grado di trascinare il mercato edilizio. Ne parliamo con Giacomo Buffarini, ingegnere, ricercatore presso l’ENEA, ente che collabora a questa iniziativa.

Come è nata l’iniziativa “Sisma Safe” e quali sono gli obiettivi che persegue?

Sisma Safe nasce dalla sensibilità di alcune professioniste (ingegneri e architetti) che hanno compreso come ogni sforzo in ambito edilizio di miglioramento delle performance energetiche, del comfort abitativo, o ogni altro investimento risultano vani se non è garantita la sicurezza strutturale e che risulta, quindi, necessario limitare la vulnerabilità sismica di un edificio. L’obbiettivo è fare in modo che l’edificio, a seguito di un evento sismico della portata di quello previsto dalla normativa, non solo consenta la salvaguardia della vita (ossia non crolli), ma che possa continuare ad essere usato; più semplicemente subisca un danneggiamento nullo o estremamente limitato. Continua a leggere

Masonry buildings to the test of Italian earthquakes (interview with Guido Magenes)

…..This comparison with medicine fits very well, there are really many similarities between the work of the technician who has to understand what to do with an existing building and that of the doctor who tries to make a diagnosis and to find a correct therapy for a patient…..


versione italiana qui: Gli edifici in muratura alla prova dei terremoti italiani (colloquio con Guido Magenes)


Guido Magenes is Professor of Structural Engineering at the University of Pavia and IUSS Pavia. He is also the coordinator of the Masonry Structures division of the EUCENTRE Foundation. His area of ​​greatest competence is the seismic behavior of masonry buildings and for this reason he has also participated and still participates in numerous Italian and European technical-regulatory committees.
We discussed with him the behavior of masonry buildings in Italy, with particular reference to what happened during the last earthquakes.

1. The earthquakes of 2016 have determined a sequence of shaking that has put a strain on the buildings of the affected area, especially those in masonry. The effects seen in the field are very different: next to the buildings already heavily damaged by the earthquake of August 24th, there are others that have seen their condition worsen after the shock in October, and others that seem not to have suffered serious damage in all the sequence. Do you have an explanation for this?

 The masonry buildings stock in our country has very variable characteristics and qualities, depending on the era of construction, the materials and construction criteria that were used, the type and architectural form (ordinary buildings or churches, palaces, towers, etc … ), any maintenance and reinforcement or tampering and weakening processes that may have occurred over time. Certainly there are recurrent types of problems, but the diversity of the behavior of masonry buildings, apart from the severity of the shaking (or the different ground motion in the various sites), is  essentially due to this great variability.
Therefore, in the specific case of the seismic sequence of central Italy, which involved a very large area and a considerable variety of buildings, we observed what you say: from the recently built building, of a few storeys, in great part or fully compliant with the modern design and construction criteria, which did not show significant damage, to historic buildings with large spans and heights, such as churches, which tend to be more vulnerable and have therefore suffered great damage and collapse because of their dimensions, geometric ratios and their structural organization. In many if not most cases, also the poor quality of the materials has further worsened the situation.

2. In all the municipalities affected, seismic regulations were in force, with various years of enforcement (the extremes are represented by Amatrice and Accumoli, 1927, and Arquata del Tronto, 1984). The distribution of the damage does not seem to be influenced by these differences; is there a reason?Schermata 2018-02-05 alle 20.44.50Not all regulations are equally effective: a 1927 standard is obviously very different, under many points of view, from a rule of the 1980s or the years 2000s and, as I mentioned above, the buildings built in compliance with the latest rules behaved generally well (constructed with artificial blocks and mortars of good strength, or even stone buildings demolished and rebuilt with good quality mortars). Therefore, I would not say that the distribution of damage is not at all influenced by the regulatory context. It depends on what was written in the norm and how many buildings were built or repaired or reinforced after the introduction of the norm (in the affected centers a significant percentage of the buildings had been built before the seismic regulations that you mentioned).

The rules and design criteria are not necessarily born perfect and they have to adjust, to evolve based on the experience of earthquakes. For example, it is only fifteen or twenty years that we began to recognize that certain types of interventions proposed and widely applied after the earthquakes of Friuli and Basilicata can be harmful or plainly ineffective (think of the infamous reinforced concrete ring beams “in breccia” inserted at intermediate floors in an existing building in stone masonry: in Umbria-Marche ’97 we have begun to see its shortcomings).
In the areas in which the presence of a regulation or a seismic classification seems to have had no effect, it must also be taken into account that the on-site control of the quality of construction and execution, in particular for masonry buildings, were inexistent or ineffective at least until the more recent regulations. The use of a very bad mortar is a recurrent element in many of the old masonry buildings collapsed or damaged in the last seismic sequence. In centers like Accumoli and Amatrice it seems that even where interventions had been carried out on buildings, replacing old floors, for example, or inserting some ties, the problem of poor quality of the masonry had been greatly overlooked, ultimately making the interventions ineffective. We can add that a large part of those areas suffered a considerable depopulation since the early 1900s, with inevitable consequences on the maintenance of buildings, which has led to an increase in widespread vulnerability.

Then there are some particular cases in which historical norms and more recent norms seem to have had a positive effect. Take Norcia’s example: without going into the details of the measurements of the characteristics of the ground motion, it is a fact that Norcia in the last sequence suffered strong shaking, comparable to those of Amatrice and Accumoli but with a much lower damage to buildings. In the history of Norcia there were two very significant events that may have affected  the response of the buildings in the 2016 sequence, one before and one following the 1962 regulations. In 1859 a strong earthquake caused numerous collapses and victims in some areas of the historical center, and following this the Papal State issued a quite effective regulation that gave a series of provisions for repairs and reconstructions: on geometry, in particular on the maximum height of the buildings (two floors), on the construction details, on the quality of materials. Then, in 1979 there was another earthquake in Valnerina, after which other parts of the historic center were damaged, followed by a series of systematic reinforcement measures on many buildings. In many of these buildings the reinforcement of the vertical walls (even with the controversial technique of the reinforced plaster) has remedied one of the main elements of vulnerability, i.e. the weakness/poor quality of the masonry walls. If for a moment we leave aside the elements that can go against the use of reinforced plaster (such as the durability of the intervention), and we see it simply as a technique that has remedied a factor of great vulnerability, we can say that for Norcia there has been a positive combined effect of pre-modern and more recent regional regulations, stemming from the direct experience of seismic events.

3. Let’s  talk about seismic regulations and in particular of their engineering aspects. We hear that they have changed a lot over time, and that perhaps the non-recent ones were not entirely effective. Is it true, and if so why?

As for the engineering component of the regulation, what we now know about the structural and seismic behavior of buildings, in masonry and other structural systems, is the result of a continuous evolution through the experience of earthquakes in Italy and in other parts of the world. In Italy the engineering study of masonry buildings has resumed life, after decades of almost total abandonment, after the 1976 earthquake in Friuli. The first norms/codes that give indications on how to “calculate” a masonry building in Italy date back to the early 80s (to “calculate” I mean “quantitatively assess the level of safety”). Although “calculation” is not the only component of the design, this fact gives the idea of ​​how only the very recent rules have a technical-scientific basis aligned with current knowledge. I would like to say that the absence of calculation in a project does not necessarily imply that the building is unsafe: in the past we followed geometric and constructive rules of an empirical type, based on the experience and intuition of the mechanical behavior, although not explicated in detailed calculations. Even today, for the design of a simple and regular masonry building, it is possible to follow codified geometrical and constructive rules that avoid detailed or complex calculations, but still achieve an adequate level of safety.
The experience of the earthquakes of Irpinia, Umbria-Marche, until the most recent in central Italy, have been a continuous test and a source of knowledge. For example, as mentioned in my answer to the previous question, the Umbria-Marche 1997 earthquake, besides highlighting the great vulnerability of churches and of certain historical structures, has been an important test for strengthening criteria and techniques on masonry buildings that were proposed and developed following the Italian earthquakes of the late ’70s, showing how some techniques are not very effective or can even be harmful if applied indiscriminately and without awareness

To conclude my answer with my opinion on current technical standards, I think that as regards the design of new buildings we are really at a very advanced state of progress, which effectively attains the levels of safety that today are considered adequate. I think there are more uncertainties on the assessment and strengthening of existing buildings, even if it is not so much a regulatory problem but rather of scientific knowledge and of the correct identification of strategies and techniques for the intervention. It is certainly easier to design and build a seismic-resistant building from scratch, than to assess and intervene on an existing building.

4. How much – and how – does the construction and detailing of a building affect its seismic safety, beyond the design?

The question gives me the opportunity to dwell a little more on what is meant by “design”, which is something different from the mere “calculation”. The design includes all aspects of overall conception, choice and organization of the structure, choice of materials and construction techniques (with the awareness of how they can and should be executed in situ), performance verification calculations in terms of safety against collapse and of satisfactory behavior in normal operation, prescriptions on construction details. In modern seismic design it is also necessary to take into account, when relevant, the seismic response of the non-structural parts of the construction. There must also be a check that what is prescribed in the design is actually implemented during construction.

The calculation is therefore only a component of the design. It is interesting to note that most of the existing masonry buildings were not calculated, at least as we understand structural calculations now. The first Italian national technical standard on masonry constructions with a sufficiently detailed description of the calculations for the structural verification dates back to 1987. Technical standards with indications for the seismic calculation, were issued after the earthquake of Friuli 1976 and in subsequent times. Before those norms, a technical literature and manuals existed, with reference to the principles of mechanics, as well as a building tradition. I would like to clarify that here I am talking about regulations/norms that tell how to calculate the resistance of a masonry building, subject to seismic or non-seismic actions. Just to give an example, the Royal Decree of 1909 (post earthquake of Messina), a historical milestone as regards seismic regulations, gives criteria to define the seismic action, gives constructive and geometric rules but does not tell how to calculate the resistance (the capacity, according to the modern technical language) of a masonry building.

The constructive tradition based on the respect of the “rule of art” always had in mind the importance of construction details, of the quality of the materials, of how the building is built, and this has allowed and allows well-constructed buildings (but not “calculated”, i.e. non-engineered) to withstand even very violent seismic shocks. In modern buildings, the compliance during construction site of the execution rules, the control of the quality of the materials, is equally important, although this holds for masonry as for the other types of construction. The sensitivity of the structure to constructional defects is a function of the level of robustness of the structural system. A masonry box-like construction, strongly hyperstatic (i.e. where the number of resistant elements is higher than the minimum necessary to ensure equilibrium under the applied loads) could in principle be less sensitive to construction defects than an isostatic prefabricated structure (i.e. where the number of resistant elements is just equal to the minimum necessary to ensure equilibrium under the applied loads, so that the failure of a single element is sufficient to generate a collapse). Obviously we are talking about local defects and not generalized over the whole construction. If all materials are poor quality throughout the construction, then it is a great problem, but not necessarily a masonry building is more sensitive to such problem than, say, a reinforced concrete frame, in which also defects in the reinforcement detailing are possible (for instance in beam-column joints or in lap splices or in anchorage of rebars and so forth).

5. Many surveyors in post-earthquake reconnaissance activities have found traces of interventions that have allegedly weakened the structures. Do you agree?

In post-earthquake surveys, carried out quickly in emergency conditions, it is not always possible to clearly understand the history of the building and what changes have been made, in what time and modalities, but sometimes it is clear that some modifications to the construction have been detrimental to safety. Often these are interventions that were made with total unawareness of the effects on structural safety and purely for the purpose of use and redistribution of space. In other cases, more rare, there are also interventions made with “structural” purposes, perhaps even with the idea of ​​achieving an increase in safety, but which in reality were harmful or ineffective. A classic example, often discussed in the literature also on the basis of the Italian post-earthquake recognitions from Umbria-Marche 1997 onwards, is the insertion of new, rigid and heavy structural elements (such as the replacement of a wooden floor with a reinforced concrete floor) in a building with very weak masonry (for example masonry made of irregular stones with poor mortar), without the masonry being properly consolidated. There was a period, following the earthquakes of Friuli and Irpinia, where much emphasis was given to the fact that rigid diaphragms (i.e. the floors and roofs) increase the hyperstaticity, hence the robustness of the construction and the so-called “box behaviour”, by which engineers tried to replicate in existing structures something that is relatively simple to implement, and whose effects are well controllable, in new constructions, but which in an existing construction has great problems of practical implementation (particularly in the connection between new elements and existing elements) and of potentially negative structural effects (increase of stresses in an already weak masonry). It is important to note that the effectiveness of the interventions is tested by earthquakes that take place in later times, and in some areas of central Italy it has been possible to draw indications of this kind. In the earthquake of Umbria-Marche in 1997 it was possible to observe various problematic situations in buildings where the existing floors had been replaced by heavier and more rigid slabs.

Allow me, however, to add a further comment. From the scientific point of view, the fact that an intervention is “harmful” or weakens the structure compared to the non-intervention is verifiable experimentally only if there is a confirmation of what would happen to the building without intervening and what would happen following the intervention . This type of comparison in the vast majority of practical cases  is not possible, except for very fortunate cases of almost identical buildings built on the same ground where one was reinforced and the other not, or that were reinforced with different methods. Or through laboratory experiments, comparing specimens tested on a “shaking table” (earthquake simulator). So, in general I am always rather skeptical of interpretations given on the basis of purely visual rapid surveys, without the necessary in-depth study of the details and without a quantitative analysis carried out in a competent and thorough manner.
I can say (and I know that many colleagues have a similar opinion) that in many cases seen in central Italy the collapse of the construction would have taken place regardless of the type of floor, light or heavy, rigid or flexible, by virtue of the bad quality of the masonry, which appeared to be the main problem.

6. How did the repetition of the strong shocks play in the aggravation of the damage (where it occurred)? Is it something that is implicitly foreseen, and taken care of, by the seismic norms? On the other hand, how do you explain the numerous cases of almost total absence of damage?

The repeated shaking aggravates the damage, the more the damage caused by the previous shock is serious. It seems a rather obvious statement, but essentially it is what happens. For example, if a first shock on a masonry building generates only a few cracks, not very wide and of a certain type (for example horizontal cracks, which close after the shock due to selfweight), the building has not lost much of its resistance; so if it is subjected to repeated shaking, less intense than the first shock, it is possible that the damage does not get too much worse, and if it is subjected to a shaking stronger than the first shock it will have a resistance equal to or slightly less than it would have if the first shock had not been there. On the other hand, if a shock leads to the development of diagonal cracks (so-called “shear cracks”) or vertical cracks with spalling, the damaged part has lost a significant portion of its ability to resist and subsequent repeated shaking can lead to progressive degradation and collapse, even if the subsequent shocks suffered by the building, individually, are perhaps less strong than the first one. This is something visible and reproducible also in the laboratory.

That said, there are types of constructions and structural elements that are more or less sensitive to the repetition of the seismic action. When seismic engineers speak of “ductility” of the structure or of a mechanism, they also refer to the ability of a structure to resist repeated loading cycles well beyond the threshold of the first crack or the first visible damage, without reaching collapse. A well-designed modern reinforced concrete construction is a structure of this type, for example. Unreinforced masonry, on the other hand, is more susceptible to damage induced by the repetition of loading cycles beyond cracking. As a consequence, existing masonry buildings, once damaged by a first shock, are more vulnerable to subsequent shocks. On the other hand, if the first shock does not cause significant damage, the safety of the building remains, in most cases, more or less unchanged and this accounts for the fact that numerous masonry constructions have also resisted repeated shocks. Unfortunately, sometimes the damage may not be clearly visible. Damage in masonry originates in the form of micro-cracks (not visible to the naked eye) which then develop into macro-cracks. If in a laboratory test a sample of masonry is pushed to a condition very close to the onset of the macro-cracks but the load is removed just before they develop, it may happen that in a subsequent loading phase the macro-cracks develop at a load level lower than that achieved in the first phase. It may therefore happen that a building that has resisted a violent shock without apparent damage is visibly damaged by a subsequent shock less violent than the first.

You ask me if the behavior of the structure under repeated shocks is implicitly considered in the seismic norms: the answer is yes, at least for certain aspects. For example, the respect of certain construction details in reinforced concrete and the application of certain rules in the sizing of the sections and of the reinforcement have this purpose: to make the structure less susceptible to damage under repeated actions. Moreover, less ductile structures, such as those in unreinforced masonry, are designed with higher seismic “loads” than the more ductile structures, also to compensate their greater susceptibility to degradation due to repeated action. However, there are some aspects of the problem of resistance and accumulation of damage under repeated shaking that remain to be explored and are still cutting-edge research topics. In particular, if it is true that theoretical models are becoming available to assess how the risk (i.e. the probability of collapse or damage) evolves in a building or a group of buildings as time passes and seismic shocks occur, these models must still be refined to give results that are quantitatively reliable.

7. It seems to me that the variety of masonry buildings, at least in Italy, is really large: so large that knowing them requires an approach similar to that of medicine, where each case has its own peculiarities. Therefore, there is perhaps no universal therapy, every case requires a specific care: is it correct? And if so, given that the building and construction techniques and quality of different areas of the Apennines (and others) are similar to those of the areas affected in 2016, should a similar destruction be expected to repeat again?

This comparison with medicine fits very well, there are really many similarities between the work of the technician who has to understand what to do with an existing building and that of the doctor who tries to make a diagnosis and to find a correct therapy for a patient. From the technical point of view there is no universal therapy and no (good) doctor would be able to apply a therapeutic protocol without the anamnesis, the objective examination, any necessary instrumental or laboratory tests and the formulation of a diagnosis (which tells us what is the patient’s disease / health status, and then defines what he needs, the therapy). The good technician follows a similar path to arrive at the evaluation of safety and possible hypotheses of intervention (or not intervention). Of course it is possible and necessary, as is the case for medicine and public health, to define strategies and policies for prioritization and allocation of resources to ensure that the overall seismic risk in our country decreases. Certainly, where the old buildings have not been subject to maintenance, or just to aesthetic and functional maintenance without structural reinforcement, we can expect destructions similar to those seen in 2016 on the occasion of future earthquakes of comparable magnitude. This applies to both public and private buildings.

Where instead we have intervened or will intervene in a conscious way, paying attention to the problem of seismic safety, the level of damage to be expected is  lower, as the experience of the past earthquakes teaches us.
Allow me to conclude this interview with some non-purely technical engineering comments. The possibility of reducing the seismic risk in Italy depends on many factors, ranging from how politics govern the problem of natural hazards, to how technicians, individually and collectively, interact and communicate with politics, to how the presence of risk is communicated to the population, to how, as a consequence,  the citizen makes his choices when he buys or takes decisions to maintain a property. In my opinion it is necessary to progressively evolve into a system in which the citizen recognizes that it is in his own interest to pursue a higher seismic safety, initially spending a little more, because he will have a return in the future not only in terms of safety but also of economic benefit, for example in the market value of his property. The “Sismabonus” initiative is certainly a first step in this direction, but other steps will have to be taken. The goal, certainly not easy to achieve, should be that the safety level of a building has a clear and recognized economic market value, and I think this would work for both the small owner and for real estate investors. I know that some are scared by this perspective, but personally I think that, at least for what concerns privately owned real estate and facilities, there are no other ways to achieve, within a few decades, a substantial and widespread reduction of seismic risk in Italy.

 

Gli edifici in muratura alla prova dei terremoti italiani (colloquio con Guido Magenes)

…….”Questo paragone con la medicina calza benissimo; ci sono veramente tante analogie tra il lavoro del tecnico che deve capire cosa fare di un edificio esistente e quello del medico che cerca di fare una diagnosi e di individuare una terapia corretta su un paziente”…..


English version here: Masonry buildings to the test of Italian earthquakes (interview with Guido Magenes)


Guido Magenes è professore di Tecnica delle Costruzioni all’Università di Pavia e allo IUSS Pavia. E’ inoltre coordinatore della sezione murature della Fondazione EUCENTRE. La sua area di maggior competenza è il comportamento sismico delle costruzioni in muratura e per questo ha anche partecipato e tuttora partecipa a numerosi comitati tecnico-normativi italiani e europei. 
Abbiamo discusso con lui del comportamento degli edifici in muratura in Italia, con particolare riferimento a quanto avvenuto in occasione degli ultimi terremoti.

1. I terremoti del 2016 hanno determinato una sequenza di scuotimenti che ha messo a dura prova gli edifici della zona colpita, in particolare quelli in muratura. Gli effetti visti sul campo sono molto diversi fra loro: accanto agli edifici già pesantemente danneggiati dal terremoto del 24 agosto ve ne sono altri che hanno visto aggravare le loro condizioni dalle scosse di ottobre, e altri che sembrano non aver subito danni gravi in tutta la sequenza. Hai una spiegazione per questo?

Il patrimonio di edifici in muratura esistenti sul nostro territorio ha caratteristiche e qualità molto variabili, in funzione dell’epoca di costruzione, dei materiali e dei criteri costruttivi utilizzati, della tipologia e forma architettonica (edifici ordinari o chiese, palazzi, torri, eccetera…), degli eventuali interventi di manutenzione e rinforzo o manomissione e indebolimento succedutesi nel tempo. Certamente esistono tipologie problematiche ricorrenti, ma la diversità del comportamento degli edifici in muratura, al netto della severità dello scuotimento (ovvero del diverso moto del terreno nei vari siti), è dovuta appunto a questa grande variabilità.
Nel caso specifico della sequenza sismica dell’Italia centrale, che ha interessato un’area molto vasta e quindi una notevole varietà di edifici, si è quindi osservato quello che dici tu: dall’edificio di costruzione recente, di pochi piani, in buona parte o in tutto conforme ai criteri moderni di progettazione e di costruzione, che non ha presentato danni di rilievo, agli edifici storici con grandi luci ed altezze, come ad esempio le chiese, che tendono ad essere più vulnerabili e hanno quindi subito danni significativi e crolli a causa delle loro dimensioni, dei rapporti geometrici e della loro organizzazione strutturale. In molti casi anche la scarsa qualità dei materiali ha ulteriormente aggravato la situazione.

2. In tutti i Comuni colpiti vigeva la normativa sismica, con diversi anni di decorrenza (gli estremi sono rappresentati da Amatrice e Accumoli, 1927, e Arquata del Tronto, 1984).

Schermata 2018-02-05 alle 20.44.50da https://tegris2013.files.wordpress.com/2018/02/considerazioni-su-flagello-del-terremoto-e-riduzione-del-rischio-sismico.pdf

La distribuzione del danno non sembra essere influenzata da queste diversità; c’è una ragione?

Non tutte le normative sono ugualmente efficaci: una norma del 1927 è ovviamente molto diversa, sotto tanti punti di vista, da una norma degli anni ’80 o degli anni 2000 e, come ho accennato sopra, gli edifici costruiti nel rispetto delle norme più recenti si sono comportati generalmente bene (edifici costruiti con blocchi artificiali e malte di buona resistenza, oppure anche edifici in pietra demoliti e ricostruiti con malte di buona qualità).
Non direi quindi che la distribuzione del danno non sia del tutto influenzata dal contesto normativo. Dipende da cosa c’era scritto nella norma e da quanti edifici sono stati costruiti o riparati o rinforzati dopo l’introduzione della norma (nei centri colpiti una percentuale notevole degli edifici era stata costruita prima delle normative sismiche che hai ricordato). Le norme e i criteri progettuali non nascono necessariamente perfetti e aggiustano il tiro sulla base dell’esperienza dei terremoti. Ad esempio, certamente è solo da quindici-venti anni che si è incominciato a riconoscere che certi tipi di interventi proposti e largamente applicati dopo i sismi del Friuli e della Basilicata sono dannosi o non funzionano (si pensi ai famigerati ”cordoli in cemento armato in breccia” inseriti in un edificio esistente in muratura di pietrame: è da Umbria-Marche ’97 che si è incominciato a capirne l’inefficacia).
Nei centri in cui la presenza di una normativa o di una classificazione sismica sembra non aver sortito alcun effetto bisogna tener conto anche del fatto che i controlli sulla qualità della costruzione degli edifici, in particolare in muratura, erano inesistenti o inefficaci almeno fino alle legislazioni più recenti. L’uso di una malta scadentissima è un elemento ricorrente in molte delle vecchie costruzioni in muratura crollate o danneggiate nell’ultima sequenza sismica. In centri come Accumoli e Amatrice sembra che anche dove sono stati fatti interventi sugli edifici, sostituendo ad esempio i vecchi solai, o inserendo qualche catena, non ci fosse consapevolezza o si sia molto sottovalutato il problema della scarsa qualità muraria, rendendo in definitiva inefficaci gli interventi fatti. Aggiungiamo poi che gran parte di quelle aree hanno subito dagli inizi del 1900 ad oggi un notevole spopolamento, con inevitabili conseguenze sulla manutenzione delle costruzioni, che ha portato ad un incremento di vulnerabilità piuttosto diffuso.

Ci sono poi alcuni casi particolari in cui norme storiche e norme più recenti sembrerebbero aver avuto un effetto positivo. Prendiamo l’esempio di Norcia: senza entrare nel dettaglio delle misurazioni delle caratteristiche del moto, è un dato di fatto che Norcia nell’ultima sequenza abbia subito forti scuotimenti, paragonabili a quelli di Amatrice e Accumoli ma con un danno agli edifici molto inferiore. Nella storia di Norcia ci sono stati due eventi molto significativi che hanno avuto un effetto notevole sulla risposta degli edifici in quest’ultima sequenza, uno antecedente ed uno seguente alla norma del 1962. Nel 1859 un forte terremoto causò numerosi crolli e vittime in alcune zone del centro storico, e a seguito di ciò lo Stato Pontificio emanò un regolamento molto efficace che dava una serie di disposizioni sulle riparazioni e le ricostruzioni: sulla geometria, in particolare sull’altezza massima degli edifici (due piani), sui dettagli costruttivi, sulla qualità dei materiali. Poi nel 1979 c’è stato un altro terremoto in Valnerina, a seguito del quale si sono danneggiate altre parti del centro storico, a cui hanno fatto seguito una serie di interventi sistematici di rinforzo, su molti edifici. In molti di questi edifici il rinforzo delle murature verticali (pur con la tecnica controversa dell’intonaco armato) ha rimediato ad uno dei principali elementi di vulnerabilità, cioè la scarsa qualità muraria. Se per un attimo lasciamo da parte gli elementi che possono andare a sfavore dell’uso dell’intonaco armato (in primis la durabilità dell’intervento), e lo vediamo semplicemente come una tecnica che ha rimediato ad un fattore di grande vulnerabilità, possiamo dire che per Norcia c’è quindi stato un effetto positivo di normative regionali pre-moderne e più recenti scaturite dall’esperienza diretta di eventi sismici.

3. Parliamo di normativa sismica e in particolare dei suoi aspetti ingegneristici. Si sente dire che è variata molto nel tempo, e che forse quella non recente non era del tutto efficace. E’ vero, e se sì perché?

Per quanto riguarda la componente ingegneristica della norma, quello che sappiamo ora del comportamento strutturale e sismico delle costruzioni, in muratura ma non solo, è il frutto di una continua evoluzione attraverso l’esperienza dei terremoti italiani e in altre parti del mondo. Da noi in Italia lo studio ingegneristico delle costruzioni in muratura ha ripreso vita, dopo decenni di quasi totale abbandono, dopo il terremoto del Friuli. Le prime norme in cui si danno indicazioni su come “calcolare” un edificio in muratura in Italia risalgono ai primi anni ’80 (per “calcolare” intendo “valutare quantitativamente il livello di sicurezza”). Per quanto il “calcolo” non sia l’unica componente della progettazione, questo fatto dà l’idea di come siano solo le norme molto recenti ad avere una base tecnico-scientifica allineata con le conoscenze attuali. Ci tengo a dire che l’assenza del calcolo in un progetto non implica necessariamente che l’edificio non sia sicuro: nel passato si seguivano regole geometriche e costruttive di tipo empirico, basate sull’esperienza e sull’intuizione del comportamento meccanico, ancorché non esplicitata in calcoli. Ancor oggi per la progettazione di un edificio in muratura semplice e regolare è possibile seguire regole geometriche e costruttive codificate che consentono di evitare calcoli dettagliati o complessi, raggiungendo comunque un livello adeguato di sicurezza.
Le esperienze dei sismi dell’Irpinia, dell’Umbria-Marche, via via fino ai più recenti dell’Italia centrale, sono stati un continuo banco di prova e una fonte di conoscenza. Ad esempio, come accennato nella risposta alla domanda precedente, il terremoto Umbria-Marche 1997, oltre a sottolineare come sempre la grande vulnerabilità delle chiese e di certe strutture storiche, è stato un notevole banco di prova per criteri e tecniche di intervento sugli edifici in muratura proposti e sviluppati a seguito dei terremoti italiani di fine anni ’70, mettendo in evidenza come alcune tecniche non risultano essere molto efficaci o possono essere addirittura controproducenti se applicate in modo indiscriminato e inconsapevole.

Per concludere questa mia risposta con una mia opinione sulle attuali norme tecniche, credo che per quel che riguarda la progettazione delle nuove costruzioni siamo veramente ad un livello molto avanzato e che consegue i livelli di sicurezza che oggi si ritengono adeguati  Credo che ci siano più incertezze in merito alla valutazione e al rinforzo degli edifici esistenti, anche se non è tanto un problema normativo ma proprio di conoscenze scientifiche e di corretta individuazione di strategie e tecniche per l’intervento. E’ certamente più facile concepire e costruire ex novo un edificio sismo-resistente, che valutare e intervenire su un edificio esistente.

4. Quanto – e come – gioca nella sicurezza sismica di un edificio in muratura la sua realizzazione, al di là del progetto?

La domanda mi dà l’occasione di soffermarmi ancora un momento su cosa si intende per “progetto”, che è qualcosa di diverso dal mero “calcolo”. Il progetto comprende tutti gli aspetti di ideazione, concezione, scelta e organizzazione della struttura, scelta di materiali e tecniche costruttive con la consapevolezza di come potranno e dovranno essere realizzati in opera, calcoli di verifica delle prestazioni in termini di sicurezza e di comportamento in esercizio, prescrizioni sui dettagli costruttivi. Nella progettazione sismica moderna è inoltre necessario tener conto, quando rilevante, della risposta sismica delle parti non strutturali della costruzione. Deve inoltre esserci il controllo che quanto prescritto nel progetto sia realizzato in fase di costruzione. Il calcolo è quindi solo una componente del progetto. E’ interessante quindi notare come gran parte degli edifici esistenti in muratura non è stato calcolato, perlomeno come intendiamo il calcolo strutturale ora. La prima norma tecnica nazionale sulle costruzioni in muratura con una descrizione sufficientemente dettagliata dei calcoli per la verifica strutturale risale al 1987. Norme tecniche con indicazioni per il calcolo sismico, sono state emanate dopo il sisma del Friuli 1976 e via a seguire. Prima di quelle norme esisteva sostanzialmente una letteratura e una manualistica tecnica, con riferimento ai principi della meccanica, nonché una tradizione costruttiva. Vorrei chiarire che sto parlando di norme che dicano come calcolare la resistenza di un edificio in muratura, soggetto ad azioni sismiche o non sismiche. Tanto per fare un esempio, il Regio Decreto del 1909 (post terremoto di Messina), grande esempio storico di normativa sismica, dà criteri per definire l’azione sismica, dà regole costruttive e geometriche ma non dice come si calcola la resistenza (quella che oggi si chiamerebbe la capacità) di un edificio in muratura.

La tradizione costruttiva basata sul rispetto della “regola dell’arte” ha sempre avuto ben presente l’importanza del dettaglio costruttivo, della qualità dei materiali, di come l’edificio viene costruito, e questo ha consentito e consente ad edifici ben costruiti ma non “calcolati” di resistere egregiamente a scosse sismiche anche molto violente. Nella costruzione moderna il rispetto in cantiere delle regole esecutive, del controllo della qualità dei materiali, è altrettanto importante, anche se lo è per la muratura come per le altre tipologie. La sensibilità della struttura a difetti costruttivi è funzione del livello di robustezza della concezione strutturale. Una costruzione scatolare in muratura, fortemente iperstatica (cioè in cui il numero di elementi resistenti è superiore al minimo necessario per garantire l’equilibrio dei carichi) potrebbe in principio essere meno sensibile al problema di una struttura prefabbricata isostatica (cioè in cui il numero di elementi resistenti è pari al minimo necessario per garantire l’equilibrio dei carichi, per cui è sufficiente che un solo elemento vada in crisi per avere il collasso). Ovviamente stiamo parlando di eventuali difetti locali e non generalizzati su tutta la costruzione. Se tutti i materiali sono scadenti in tutta la costruzione è un grosso guaio, ed è comunque difficile dire se sta peggio un edificio in muratura o uno a telaio in cemento armato, in cui magari aggiungiamo difetti nei dettagli d’armatura nei nodi o negli ancoraggi….

5. Molti operatori che sono intervenuti sul campo, hanno riscontrato tracce di interventi che avrebbero indebolito le strutture. Ti risulta?

Nei rilievi post-terremoto svolti in modo rapido in condizioni di emergenza, non sempre si riesce a capire con chiarezza la storia dell’edificio e quali modifiche siano state apportate, in che tempi e modalità, ma a volte è evidente che alcune modifiche apportate al fabbricato siano state di detrimento alla sicurezza.  Sovente si tratta di interventi fatti con totale inconsapevolezza degli effetti sulla sicurezza e con finalità legate puramente alla destinazione d’uso, all’utilizzo e alla ridistribuzione degli spazi. In altri casi, più rari, si tratta di situazioni di interventi fatti anche con finalità “strutturali” magari anche con l’idea di conseguire un incremento di sicurezza, ma che in realtà sono dannosi o inefficaci. Un classico esempio, spesso discusso in letteratura anche sulla base dei rilievi post-sisma italiani da Umbria-Marche 1997 in poi, è l’inserimento di elementi strutturali nuovi, rigidi e pesanti (come ad esempio la sostituzione di un solaio in legno con un solaio in cemento armato) in un edificio con muratura molto debole (ad esempio muratura in pietrame irregolare con malta scadente), senza che la muratura venga consolidata in modo adeguato. C’è stato un periodo, successivo ai terremoti del Friuli e dell’Irpinia, in cui si sosteneva molto il fatto che i diaframmi (ovvero i solai e i tetti) rigidi aumentano l’iperstaticità, ovvero la robustezza della costruzione e il cosiddetto “comportamento a scatola”, per cui si cercava di riprodurre in strutture esistenti qualcosa che è relativamente semplice realizzare e i cui effetti sono ben controllabili nelle nuove costruzioni,  ma che in una costruzione esistente ha problemi realizzativi (nel collegamento tra elementi nuovi e elementi esistenti) e strutturali  (possibile aumento delle sollecitazioni nella muratura). E’ importante notare che l’efficacia degli interventi viene messa alla prova da terremoti che hanno luogo successivamente, e in alcune zone dell’Italia centrale è stato ed è possibile ora trarre indicazioni di questo tipo. Nel terremoto dell’Umbria-Marche del 1997 è stato possibile osservare diverse situazioni problematiche in edifici in cui erano stati sostituiti i solai esistenti con solai più pesanti e rigidi.

Permettimi però di aggiungere un ulteriore commento. Dal punto di vista scientifico, il fatto che un intervento sia “dannoso” ovvero indebolisca la struttura rispetto al non-intervento è verificabile sperimentalmente solo se c’è il riscontro di cosa succederebbe all’edificio senza intervenire e cosa succederebbe a seguito dell’intervento. Questo tipo di confronto nella stragrande maggioranza dei casi non c’è o non è possibile farlo, a meno di casi fortunatissimi di edifici quasi identici costruiti sullo stesso suolo in cui uno è stato rinforzato e l’altro no, oppure sono stati rinforzati con metodi diversi. Oppure, come ad alcuni ricercatori capita di fare, quando si confrontano prove sperimentali su tavola vibrante. Quindi in generale io sono sempre piuttosto scettico di fronte a interpretazioni date sulla base di rilievi puramente visivi, senza il necessario approfondimento dei dettagli e senza una analisi quantitativa svolta in modo competente.
Mi sento di poter dire (e so che molti colleghi hanno la stessa opinione) che in moltissime situazioni viste in centro Italia il crollo della costruzione sarebbe avvenuto e avverrebbe a prescindere dal tipo di solaio, leggero o pesante, rigido o flessibile, in virtù della pessima qualità della muratura, che mi sembra sia stato il problema principale.

6. Come ha giocato nell’aggravamento del danno (laddove si è verificato) il ripetersi degli scuotimenti forti? Si tratta di qualcosa che è implicitamente previsto, e contrastato, dalle norme sismiche? Viceversa, come spieghi i numerosi casi di assenza quasi totale di danno?

Lo scuotimento ripetuto aggrava tanto più il danno quanto più il danno generato dalla scossa precedente è grave. Sembra un’affermazione un po’ banale, però nella sostanza è quello che succede. Per esempio, se in un edificio in muratura una prima scossa genera solo poche fessure non molto ampie e di un certo tipo (ad esempio fessure orizzontali nei muri, che si richiudono dopo la scossa per effetto del peso proprio), l’edificio non ha perso molta della sua capacità resistente; quindi se verrà assoggettato a scuotimenti ripetuti, meno intensi della prima scossa, è possibile che il danno non si aggravi eccessivamente, e se verrà assoggettato ad uno scuotimento più forte della prima scossa avrà una resistenza uguale o di poco inferiore a quella che avrebbe se la prima scossa non ci fosse stata. Se invece una scossa porta a sviluppare fessure diagonali (le cosiddette fessure “per taglio”) o fessure verticali con distacchi, la parte lesionata ha perso una quota significativa della sua capacità di resistere e lo scuotimento ripetuto successivo può portare al degrado progressivo e al crollo anche se le scosse successive subite dall’edificio, singolarmente sono magari meno forti della prima. E’ qualcosa di visibile e riproducibile anche in laboratorio.

Detto questo, ci sono tipologie di costruzioni e di elementi strutturali che sono più o meno sensibili al ripetersi dell’azione sismica. Quando gli ingegneri sismici parlano di “duttilità” della struttura o di un meccanismo si riferiscono anche a questo, cioè alla capacità di una struttura di resistere a ripetuti cicli di sollecitazione ben oltre la soglia della prima fessurazione o del primo danno visibile, senza arrivare al crollo. Una costruzione moderna ben progettata in cemento armato è una struttura di questo tipo, ad esempio. La muratura non armata, invece è più suscettibile al danno indotto dalla ripetizione di cicli di sollecitazione post-fessurazione. Come conseguenza, gli edifici esistenti in muratura una volta danneggiati da una prima scossa sono più vulnerabili a scosse successive. Se invece la prima scossa non genera danni di rilievo la sicurezza della costruzione si mantiene, nella maggior parte dei casi, più o meno inalterata e questo rende conto del fatto che anche numerose costruzioni in muratura hanno resistito alle scosse ripetute. Purtroppo a volte il danno può non essere chiaramente visibile. Il danno nella muratura si origina sotto forma di micro-fessure (non visibili ad occhio nudo) che si sviluppano poi in macro-fessure. Se in una prova di laboratorio si spinge un campione di muratura ad una condizione molto prossima all’innesco delle macro-fessure ma si rimuove il carico prima del loro sviluppo, può succedere che in una fase di carico successiva la macro-fessura si formi ad un livello di carico inferiore a quello raggiunto nella prima fase. Può quindi succedere che un edificio che ha resistito ad una scossa violenta senza danni apparenti si lesioni visibilmente per una scossa successiva meno violenta della prima.

Mi chiedi se il comportamento della struttura a scosse ripetute sia implicitamente considerato nelle norme sismiche: la risposta è affermativa, almeno per alcuni aspetti. Ad esempio, il rispetto di certi dettagli costruttivi nel cemento armato e l’applicazione di certe regole nel dimensionamento delle sezioni e dell’armatura hanno proprio anche questo scopo, di rendere la struttura meno suscettibile al danno sotto azioni ripetute. Inoltre strutture meno duttili, come quelle in muratura non armata, vengono progettate con azioni sismiche di progetto più elevate anche per “compensare” la loro maggiore suscettibilità al degrado dovuto all’azione ripetuta. Ci sono però alcuni aspetti del problema della resistenza e dell’accumulo del danno sotto scosse ripetute che restano ancora da esplorare e costituiscono un argomento di ricerca ancora abbastanza “di frontiera”. In particolare, se è vero che incominciano ad essere disponibili dei modelli concettuali per valutare come cambia il rischio (ovvero la probabilità di collasso o di danneggiamento) di un edificio o di un insieme di edifici al trascorrere del tempo e al susseguirsi delle scosse sismiche, questi modelli vanno ancora notevolmente affinati per dare risultati che siano quantitativamente affidabili.

7. Mi sembra di capire che la varietà delle casistiche degli edifici in muratura, almeno in Italia, sia veramente elevata: tanto elevata che conoscerle richiede un approccio simile a quello della medicina dove ogni caso rappresenta quasi un fatto singolo. Forse non esiste quindi una terapia universale ogni caso richiede una cura particolare: è corretto? E se sì, visto che le condizioni edilizie di diverse zone dell’Appennino (e non solo) sono simili a quella delle zone colpite nel 2016, ci si devono attendere distruzioni analoghe?

Questo paragone con la medicina calza benissimo, ci sono veramente tante analogie tra il lavoro del tecnico che deve capire cosa fare di un edificio esistente e quello del medico che cerca di fare una diagnosi e di individuare una terapia corretta su un paziente. Dal punto di vista tecnico non esiste una terapia universale e a nessun (bravo) medico verrebbe in mente di applicare un protocollo terapeutico senza l’anamnesi, l’esame obiettivo, eventuali esami strumentali o di laboratorio e la formulazione di una diagnosi (che ci dice quale è la malattia /stato di salute del paziente, e quindi ci definisce di cosa ha bisogno). Il bravo tecnico segue un percorso analogo per pervenire alla valutazione della sicurezza e alle possibili ipotesi di intervento (o non intervento). Certo è possibile e doveroso, come avviene a livello sanitario, definire delle strategie e delle politiche di prioritizzazione e allocazione di risorse per far sì che complessivamente il rischio sismico nel nostro paese diminuisca. E’ certo che là dove l’edilizia vecchia non è stata soggetta a manutenzione, o a sola manutenzione estetica e funzionale senza rinforzo strutturale ci si possono attendere distruzioni analoghe a quelle viste nel 2016 in occasione di eventuali futuri sismi di magnitudo comparabile. Questo vale sia per l’edilizia pubblica che privata. Là dove invece si è intervenuti o si interverrà in modo consapevole ponendo attenzione al problema della sicurezza sismica, l’esperienza degli ultimi terremoti ci insegna che il livello di danno da attendersi sarà più contenuto.

Permettimi di concludere questa intervista con qualche commento di tenore non prettamente tecnico-ingegneristico. La possibilità di ridurre il rischio sismico in Italia dipende da tanti fattori, che vanno dal modo con cui la politica affronta il problema dei rischi naturali, al modo con cui i tecnici, singolarmente e collettivamente, interagiscono e comunicano con la politica, al modo con cui si comunica la presenza del rischio alla popolazione, al conseguente modo con cui il cittadino compie le sue scelte quando acquista o deve decidere di manutenere un immobile. Secondo me è necessario arrivare progressivamente ad un sistema in cui il cittadino riconosca che è nel suo interesse perseguire una maggiore sicurezza sismica, spendendo inizialmente un po’ di più perché ne avrà un ritorno in futuro non solo in termini di sicurezza ma anche di beneficio economico, ad esempio di valore del proprio immobile. L’iniziativa del Sismabonus è sicuramente un primo passo in questa direzione, ma dovranno essere fatti altri passi. L’obiettivo, certamente non facile da raggiungere, dovrebbe essere che il livello di sicurezza di una costruzione abbia un chiaro corrispettivo in termini di valore economico, e credo che questo funzionerebbe sia per il piccolo proprietario che per gli investitori immobiliari. So che questo spaventa alcuni, ma personalmente credo che, almeno per quel che riguarda il patrimonio immobiliare di proprietà privata, non ci siano altre soluzioni per arrivare nel giro di qualche decennio ad una concreta e diffusa riduzione del rischio sismico in Italia.

 

 

 

 

 

Achille e la tartaruga, ovvero la riduzione di vulnerabilità e rischio sismico in Italia (colloquio con Gian Michele Calvi)

Come dopo ogni terremoto distruttivo in Italia, anche dopo la sequenza sismica del 2016-2017 si sono risvegliati i dibattiti sul rischio sismico, sulla messa in sicurezza degli edifici, i relativi costi, ecc.
Ne discutiamo con Gian Michele Calvi, professore allo IUSS di Pavia e Adjunct Professor alla North Carolina State University. Calvi è stato il fondatore della Fondazione Eucentre e della ROSE School a Pavia; è attualmente uno dei Direttori della International Association of Earthquake Engineering. Ha coordinato, fra le altre cose, il Gruppo di Lavoro che ha redatto il testo dell’Ordinanza PCM 3274 del 2003, che ha innovato il sistema della normativa sismica in Italia. È stato presidente e componente della Commissione Grandi Rischi, sezione rischio sismico. È stato imputato, e successivamente assolto “perché il fatto non sussiste”, nel cosiddetto “Processo Grandi Rischi”.

Ha sempre lavorato ad innovare la progettazione sismica, concentrandosi inizialmente sulle strutture in muratura e sui ponti, l’isolamento e la progettazione basata sugli spostamenti negli ultimi vent’anni. Ha pubblicato un gran numero di articoli sull’argomento e ricevuto vari riconoscimenti internazionali.

C’è qualcosa di nuovo all’orizzonte, secondo te?

Sai bene quanto me che si tratta di risvegli a carattere cronico, che si ripetono in modo analogo da più di un secolo. Nel caso specifico mi pare che ci siano ancora più chiacchiere e meno fatti. Incluso la fantomatica “Casa Italia” di cui confesso di non capire nulla, obiettivi strategia tattica risultati.
Gli unici momenti in cui ho percepito fatti veri, in modo diretto o attraverso lo studio della cronaca sono stati:

  • l’incredibile sviluppo scientifico e tecnico che ha seguito il terremoto di Messina del 1908;
  • la strategia di ricostruzione dopo il Friuli, in cui si è privilegiato il settore produttivo rispetto al residenziale;
  • la rivoluzione di norme e mappa di pericolosità dopo il terremoto di San Giuliano di Puglia del 2002;
  • la costruzione di 186 edifici isolati in poco più di sei mesi dopo il terremoto di L’Aquila.

So bene che gli ultimi due casi possono apparire come auto citazioni, ma ciò non toglie nulla ai fatti. Quello che ora mi piacerebbe vedere è un cambiamento della politica di intervento dopo un evento, con la creazione di incentivi che favoriscano l’azione dei privati ed il progressivo passaggio dallo Stato al sistema assicurativo della copertura delle perdite.
Spero, senza ottimismo. Continua a leggere

Achilles and the Turtle, or the reduction of vulnerability and seismic risk in Italy (interview with Gian Michele Calvi

(translated from the Italian by Google Translate, reviewed)

As after every destructive earthquake in Italy, the sequence of 2016-2017 has awakened the debates on seismic risk, on the safety of buildings, the relative costs, etc.
We discuss this with Gian Michele Calvi, who is professor at the IUSS of Pavia and Adjunct professor at North Carolina State University. He was the founder of the Eucentre Foundation and the ROSE School in Pavia; he is currently one of the directors of the International Association of Earthquake Engineering.
He coordinated, among other initiatives, the working group that drew up the text of the Ordinance PCM 3274 of 2003, which innovated the system of the seismic building code in Italy. He was president and member of the Commission of Major Risks, seismic risk section. He was accused, and subsequently acquitted “because the fact does not exist”, in the so-called “Great risks” or L’Aquila trial.
He has always worked to innovate the seismic design, concentrating mainly on masonry structures and bridges, isolation and design based on displacements over the last twenty years. He has published a large number of articles on the subject and received various international recognitions.

Is there something new on the horizon, according to you?

You know as well as me that there are chronic awakenings, which are repeated in a similar way since more than a century. In the specific case it seems to me that there is even more talking and less facts. Including the fancy “Casa Italia”, of which I confess I do not understand anything: tactics, strategy, goals.
The only moments in which I perceived real facts, directly or through the study of the history were:

  • the incredible scientific and technical development that followed the Messina earthquake of 1908;·
  • the rebuilding strategy after Friuli, where the production sector was more privileged than the residential one;
  • the revolution of codes and seismichazard maps the earthquake of San Giuliano of Puglia in 2002;
  • the construction of 186 isolated buildings in just over six months after the earthquake in L’Aquila.I know that the last two cases may appear as self-quotes, but that does not detract from the facts.
    What I would like to see now is a change in the policy of intervention after an event, creating incentives for private action and progressive transition from the state to the loss coverage insurance system.
    Hope, without optimism.

Continua a leggere

Che cosa vuol dire “antisismico”? What does “anti-seismic” mean? (Colloquio con Rui Pinho)

English version below

Il termine “antisismico” è entrato da qualche tempo a far parte del linguaggio corrente dei media: si legge ad esempio che “il 70% degli edifici italiani non è antisismico”; “9 scuole su 10 non sono antisismiche” (si veda ad esempio un recente articolo pubblicato dall’Espresso che fornisce la possibilità di interrogare il database delle scuole italiane, gestito dal MIUR, ottenendo la risposta al quesito se la singola scuola sia o meno antisismica – ne discutiamo più avanti). Il termine, tuttavia, assume differenti significati a seconda di chi lo usa: l’immaginario collettivo lo percepisce, più o meno, come una sorta di sistema binario che si risolve per l’appunto in un sì o un no (antisismico uguale “a prova di terremoto”): l’ingegnere lo intende in un modo un po’ diverso, e preferisce parlare ad esempio di “quanto antisismico”.
Ne discutiamo con Rui Pinho, ingegnere sismico, professore associato all’Università di Pavia, per cinque anni segretario generale dell’iniziativa internazionale GEM (Global Earthquake Model) e che svolge ora l’incarico di Direttore Scientifico della Fondazione Eucentre di Pavia. Continua a leggere

Sopra i nostri piedi – Above our feet (Massimiliano Stucchi)

(english version below)

Questo titolo prende manifestamente spunto da quello del volume di Alessandro Amato: “Sotto i nostri piedi”, arrivato alla seconda ristampa (con integrazione sulla sequenza sismica del 2016 in Centro Italia) e in distribuzione nelle edicole con “Le Scienze”, dopo che l’autore è stato finalista del Premio Letterario Galileo 2017.

Il volume di Amato tratta di sismologia, previsione dei terremoti, aspetti scientifici, culturali e politici. I sismologi si occupano di descrivere, nel miglior modo possibile, come si generano i terremoti e come le onde sismiche si propagano nella Terra; il tutto, appunto, sotto i nostri piedi. Alcuni sismologi si occupano, in una specie di terra di confine dove operano anche alcuni ingegneri, di descrivere come le onde sismiche interagiscono con la superficie del terreno e con gli edifici: quindi, di fornire la descrizione del moto del suolo nelle modalità più adatte all’ingegneria sismica. Questa terra di confine si chiama in inglese “engineering seismology”, le cui possibili traduzioni italiane suonano tutte male. Una Sezione dell’INGV, quella di Milano, si occupa in prevalenza di questi aspetti ed era denominata “Sismologia Applicata”; tempo fa aveva ricercato una collaborazione stretta, istituzionale, con la Fondazione Eucentre di Pavia, alla cui costituzione INGV aveva peraltro contribuito come socio fondatore, sia pure con poco merito e ancor meno investimento. Continua a leggere

I danni dei terremoti: chi paga? (Patrizia Feletig e Enzo Boschi)

Patrizia Feletig (laureata in economia, esegue analisi accurate della politica energetica, delle ricadute economiche delle moderne tecnologie  e dei grandi temi della moderna società come i disastri naturali e non. Scrive su importanti giornali nazionali e internazionali come free lance); e
Enzo Boschi (geofisico, già professore ordinario all’Università di Bologna, a lungo Presidente dell’INGV. Non ha bisogno di ulteriori presentazioni);

intervengono a proposito dei costi delle catastrofi, che tradizionalmente in Italia si riversano sullo Stato e quindi su tutti noi, in modo quasi automatico. Il recente Decreto per la ricostruzione porta questi temi ancora più in evidenza.

Una percentuale molto consistente del nostro grande debito pubblico è ascrivibile ai disastri naturali, sopratutto terremoti ed alluvioni, che frequentemente colpiscono il nostro fragile territorio (nella tabella sono riassunti i costi dei terremoti).

schermata-2016-10-12-a-17-28-19

Questo ci mette in una situazione di inferiorità economica rispetto ad altri Paesi geologicamente stabili.
Può forse sembrare paradossale ma i terremoti che nell’ultima decina di anni hanno funestato l’Italia sono da considerare moderati. Potrebbero verificarsi situazioni molto più devastanti che potrebbero mettere letteralmente in ginocchio l’economia del Paese.
È assolutamente necessario correre ai ripari: un passaggio assolutamente necessario è il ricorso intelligente alle Assicurazioni in modo da ottenere contemporaneamente il coinvolgimento informato dei cittadini e i contributi dello Stato, evitando gli enormi e assurdi sprechi degli ultimi cinquant’anni.

D’accordo: ma che cosa proponete allora?

Il ragionamento che qui proponiamo è stimolato dalle scene di disperazione e di distruzione che, ancora una volta, abbiamo dovuto vedere il 24 agosto e che tutti si augurano, ancora una volta, di non vedere più. E’ arrivato il decreto sulla ricostruzione delle zone colpite, che contiene l’impegno di risarcire tutti i proprietari di case danneggiati anche quelli di seconde case.
I danni si aggirano sui 4 miliardi di euro ma si tratta di una prima stima da aggiornare dopo la valutazione definitiva che arriverà a metà novembre assieme alla richiesta all’UE di un dossier per l’attivazione del fondo emergenze.
Benvenuto, il decreto, ma non risolutivo della questione: come risarcire i danni? questione che si ripropone puntualmente all’indomani di una calamità naturale.
Qual è il modo meno impegnativo per le casse pubbliche di coprire i sinistri da emergenze ambientali? Non sono bazzecole; secondo lo studio di Cineas le sole alluvioni comportano costi annui pari allo 0,2% del PIL.

Continua a leggere

L’importanza dei controlli e del ruolo dello Stato nella riduzione del rischio sismico (Alessandro Venieri)

E’ vero: sono pienamente d’accordo con l’articolo di Massimiliano Stucchi “le colpe degli altri”, non bisogna sempre piangersi addosso e delegare agli altri, allo Stato in genere, compiti a cui lo Stato stesso non riesce poi ad assolvere. Sicuramente è soprattutto un problema di carattere culturale, quindi di lunga e difficile risoluzione, ma il problema rimane, i terremoti ci saranno e alcuni saranno ancora più forti di quello dell’Aquila, dell’Emilia e di Amatrice, perciò un cambiamento dovremo pur farlo pensando ai nostri figli e alle future generazioni. Continua a leggere