La nuova versione di DISS, il database delle sorgenti sismogenetiche (colloquio con Gianluca Valensise)

Gianluca Valensise, sismologo di formazione geologica, dirigente di ricerca dell’INGV, è autore di numerosi studi sulle faglie attive in Italia e in altri paesi. In particolare è il “fondatore” della banca dati delle sorgenti sismogenetiche italiane (DISS, Database of Individual Seismogenic Sources: https://diss.ingv.it). Gli abbiamo chiesto di commentare l’ultima versione, pubblicata di recente.

Gianluca, puoi spiegare ai non addetti ai lavori in che cosa consiste questo database?

Il Database of Individual Seismogenic Sources, o DISS, è uno strumento ideato per censire le sorgenti sismogenetiche, ovvero le faglie in grado di generare forti terremoti che esistono su uno specifico territorio, esplorandone le dimensioni, la geometria e il comportamento atteso, espresso dallo slip rate e dalla magnitudo degli eventi più forti che tali faglie possono generare. Presenta delle somiglianze con un catalogo/database della sismicità storica, nella misura in cui fornisce informazione georeferenziata sul verificarsi dei forti terremoti, potendo fungere da base di partenza per l’elaborazione di modelli di pericolosità sismica a varie scale spaziali e temporali; tuttavia se ne differenzia per due ragioni fondamentali. La prima è quella di essere principalmente basato su informazione geologica, geofisica e sismometrica, e in parte anche storica. La seconda, che ne rappresenta la vera forza, e quella di “guardare in avanti” in modo esplicito, proponendo dove potrebbero accadere i terremoti del futuro e con quali caratteristiche. Anche un catalogo storico può essere utilizzato con le stesse finalità, sulla base del principio-cardine della Geologia per cui è possibile “ribaltare sul futuro” gli eventi naturali che abbiamo visto nel passato; ma l’immagine del futuro che potrà derivare da quest’operazione è certamente meno nitida di quella che si può ottenere ipotizzando l’attivazione futura di sorgenti sismogenetiche delle quali, almeno nell’ambito di incertezze anche ampie, riteniamo di conoscere le caratteristiche fondamentali, come lunghezza, profondità, cinematica e magnitudo del terremoto più forte che possono generare.

Perché ‘sorgenti sismogenetiche’ e non semplicemente ‘faglie’?

Questo è un quesito importante, che richiede un flashback di circa mezzo secolo. Un’acquisizione relativamente recente nel campo delle Scienze della Terra – parliamo di qualcosa che ha iniziato ad emergere sostanzialmente sugli anni ’70 e gli anni ’80, quantomeno in Italia – è che le faglie che attraversano e dislocano la crosta terrestre sono fortemente gerarchizzate. Fino ad allora aveva prevalso una visione decisamente “piatta” del problema, in virtù della quale tutte le faglie indistintamente venivano considerate in grado di generare terremoti, purché attive; inoltre si tendeva a non cogliere la loro tridimensionalità, anche perché questa caratteristica si scontrava con l’incapacità del geologo di osservare il pianeta a profondità superiore a poche decine di metri, se non attraverso trivellazioni o attraverso l’esecuzione di profili sismici, usando tecnologie sviluppate a partire dal secondo dopoguerra dalla nascente industria degli idrocarburi. A quell’epoca i sismologi venivano soprattutto dal mondo della Fisica, dunque avevano una chiara percezione delle dimensioni e della tridimensionalità della sorgente di un forte terremoto ma non erano in grado di inquadrarla nella realtà geologica; per loro la faglia era al massimo un piano idealizzato nello spazio. Quella realtà ovviamente la maneggiavano bene i geologi, i quali però in quel momento del fenomeno sismico coglievano soprattutto gli effetti di scuotimento, ed eventualmente la loro variabilità legata alla geologia di superficie.

Il punto di svolta che ha riavvicinato queste due culture, un tempo quasi contrapposte, è rappresentato dal terremoto dell’Irpinia del 1980 e dalle successive ricerche sul terreno. Le ricerche sugli aspetti geologici di questo terremoto iniziarono subito ma finirono già nel 1981, quando io ero ancora studente; ripresero nel 1984, per merito di due studiosi inglesi, e furono poi proseguite da Daniela Pantosti e dal sottoscritto nel novembre 1986. Seguirono a ruota nuove ricerche sui terremoti del 1915 nella Marsica e del 1908 nello Stretto di Messina.
Alla fine degli anni ’80 iniziarono quindi ad essere indagati a fondo i terremoti più forti del secolo scorso, per i quali erano disponibili sia dati strumentali, sia osservazioni di terreno su come ciascun evento si inquadrava nell’evoluzione della geologia recente e del paesaggio. Apparve finalmente chiaro anche ai geologi italiani che un forte terremoto è generato da una grande faglia, lunga anche 50 km (in Italia); talora inaccessibile all’indagine diretta, ma che attraverso il suo movimento ripetuto nel tempo diventa l’attore principale dell’evoluzione della geologia e del paesaggio dell’area in cui si trova. L’attività di questo elemento di ordine zero, che noi chiamiamo sorgente sismogenetica e che non necessariamente appare in superficie (si parla allora di una faglia ‘cieca’), determina a sua volta la formazione di un complesso reticolo di faglie gerarchicamente subordinate nel volume di roccia in cui è immerso. Queste faglie minori, che per lo più non sono in grado di generare terremoti, rappresentano certamente una evidenza diretta dell’esistenza della sorgente profonda e sono certamente ‘attive’ in senso geologico; ma allo stesso tempo è difficile – se non impossibile – evincere da esse i caratteri della sorgente profonda.

Dunque in che cosa il DISS si differenzia dai database delle faglie attive?

La risposta discende direttamente da quanto ho appena asserito. Il DISS (si veda l’immagine, che mostra la pagina di ingresso alla consultazione della versione 3.3.0 del database, pubblicata a dicembre del 2021), si propone di censire con la massima accuratezza delle sorgenti sismogenetiche, ovvero delle strutture di ordine gerarchico principale che possono causare forti terremoti; anche se, come spesso accade, tali strutture sono cieche, ovvero prive di un’espressione superficiale diretta, cioè fragile, o sono addirittura in mare. Un’ampia sintesi di cosa è il DISS e di cosa contiene, seppure non molto aggiornata, è fornita in Basili et al. (2008). Ovviamente prima di censirle bisogna identificarle, queste sorgenti, verificando i rapporti di ciascuna con quelle adiacenti: un tema di ricerca che ancora oggi non viene insegnato in alcun ateneo, per quello che mi risulta.
A sua volta, un database di faglie attive – in Italia abbiamo ITHACA (ITaly HAzard from CApable faults), nato nel 2000 e gestito dall’ISPRA – tende a censire tutte le faglie che interessano un determinato territorio e che si sono mosse in tempi relativamente recenti (a seconda dei casi si ragiona sugli ultimi 10.000 anni, o sugli ultimi 40.000 anni, o anche su tempi più lunghi). Tuttavia, essendo basato quasi esclusivamente sull’evidenza di superficie, questo database difficilmente potrà contenere faglie cieche di qualunque ordine gerarchico, incluse quelle primarie, e tantomeno faglie a mare.

Schermata 2022-05-04 alle 22.53.42Si badi bene che dietro questo dualismo ci sono due visioni molto differenti della ricerca sulla sismogenesi. Il DISS “parte dai terremoti”, mentre ITHACA (così come tutte le compilazioni simili in giro per il mondo) “parte dalle faglie”. Dove c’è stato un forte terremoto ci deve essere per forza una grande sorgente sismogenetica, e questo spiega anche perché il DISS sia nato in qualche modo “imparentato” con il CFTI, il Catalogo dei Forti Terremoti in Italia, che non a caso è arrivato a piena maturazione fra il 1997 e il 2000. Sapendo che i grandi trend sismogenetici sono relativamente pochi e relativamente regolari, l’obiettivo iniziale del DISS era quello di ricostruire al meglio che fosse possibile questa “litania” di sorgenti sismogenetiche, messe in fila come un trenino. C’era un fatto certo, il terremoto – e questo implicava anche una sconfinata fiducia nelle capacità e nell’importanza della sismologia storica, che io ancora oggi difendo strenuamente – e c’era un esito incerto, ovvero la nostra capacità di “capire” la sorgente di quel terremoto. Viceversa, nella ricerca sulle faglie attive di superficie prima di tutto contano le faglie stesse, ovvero conta la capacità – mai scontata – di identificare importanti dislocazioni sul terreno e di certificarne “l’attività”; i terremoti semmai arrivano dopo, venendo “calati,” talvolta addirittura “forzati”, sulle strutture individuate, con la sola eccezione di quei pochissimi casi in cui siamo stati testimoni diretti sia dello scuotimento sismico, sia degli effetti geologici di superficie.

Un caso per tutti è quello del terremoto del 1693 nell’area iblea, che si trovò a essere assegnato alla cosiddetta scarpata ibleo-maltese, distante qualche decina di chilometri dall’area dei maggiori effetti di quell’evento, e che oggi in molti riteniamo essere in terraferma, probabilmente sotto la dorsale del Monte Lauro. Ritenevo – e a maggior ragione ritengo oggi ­– che quello fu un errore concettuale, basato sulla presunzione che tutte le faglie sismogenetiche abbiano un’espressione superficiale, e per di più, che siano ‘poche’. Ma era una presunzione, appunto, perché come già accennato, molte grandi faglie sismogenetiche sono parzialmente o totalmente cieche; ed erano gli stessi terremoti a mostrarci qualcosa che le faglie attive di superficie, evidentemente un sottoinsieme di tutte le faglie che attraversano la crosta terrestre, non avrebbero mai potuto insegnarci. Mi riferisco al terremoto del 1980 in Irpinia, generato da un faglia che arrivava in superficie ma che mai avrebbe potuto essere identificata a priori (in compenso ne venivano identificate numerose altre, che però quel 23 novembre 1980 non si mossero); al terremoto del 1908, un evento di magnitudo superiore a 7.0 generato da una faglia sorprendentemente ma evidentemente cieca; o anche al terremoto di San Giuliano di Puglia del 2002, generato da una faglia profonda 10-20 km che nessun geologo di terreno avrebbe mai potuto vedere e mappare. Le mie possono suonare come critiche sgradevoli, ma a 25 anni dall’inizio della vicenda che sta narrando credo sia giusto fare anche i conti con la storia, con i suoi successi e con gli eventuali errori; anche miei ovviamente.

Tornando al dualismo sorgenti vs. faglie attive (di superficie, è sottinteso), devo riconoscere che sto molto semplificando il tema, ma solo perché per me questa distinzione è chiarissima, e tuttavia, su questo dualismo negli ultimi 25 anni non sono mancati gli equivoci. Tra le faglie attive esistono in piccola misura anche elementi primari, ovvero elementi che rappresentano l’espressione diretta della fagliazione in profondità; ma resta vero che per la gran parte, le faglie attive sono in realtà faglie passive, che non è un gioco di parole ma indica il fatto che esse si mobilizzano esclusivamente se e quando si muove la sottostante sorgente sismogenetica, ovvero l’elemento strutturale di ordine gerarchico principale.
Fortunatamente questa mia affermazione si sta consolidando sempre di più negli ultimi anni, ma sono sicuro che esistono ancora molti geologi “duri e puri” che non ci si riconoscono, sia in Italia sia in molte altre regioni sismiche del globo. Su questo tema è utile mostrare una immagine tratta da Bonini et al. (2014), e che riguarda la sorgente del terremoto di L’Aquila del 2009:

Schermata 2022-05-04 alle 22.53.57

La figura mostra due sezioni geologiche attraverso la faglia che ha generato quel terremoto, indicata in rosso e ben delineata dalla sismicità. Nell’articolo si tentò di gerarchizzare tutte le faglie che hanno avuto un ruolo in quel forte terremoto: dalla principale, che è poi la sorgente sismogenetica, indicata come Categoria 1, a dei piani di sovrascorrimento antichi che hanno limitato la dimensione della faglia principale “confinandola” tra circa 3 e circa 10 km di profondità e limitando così la magnitudo del terremoto(Categoria 2), alle faglie di superficie generate ex-novo (Categoria 4) o riattivate passivamente in quanto pre-esistenti (Categoria 5) dal movimento della faglia profonda.
Come dicevo sopra e come la figura mostra chiaramente, ricostruire la geometria di una sorgente sismogenetica profonda a partire dei soli elementi fragili di superficie è come minimo fonte di gravi ambiguità, perché si rischia di mappare come elementi primari e indipendenti delle faglie che in effetti si muovono solo in corteo e come risposta al movimento di un elemento di ordine gerarchico superiore, e come massimo impossibile. Idealmente una sorgente sismogenetica viene ricostruita a partire da dati strumentali di varia natura, che possono essere poi confrontati con l’evidenza di terreno; ma per i terremoti di epoca pre-strumentale bisogna ricorrere a un mix ben strutturato di dati storici, geologici e geomorfologici, che illustrino una evoluzione estesa su un orizzonte relativamente lungo, per esempio un milione di anni, e di dati geofisici, se disponibili, come ad esempio le tante linee sismiche industriali realizzate in Italia nell’ambito della ricerca degli idrocarburi.
La conoscenza delle faglie attive e delle sorgenti sismogenetiche è utile per tante ragioni, ma la sua applicazione più ovvia è nella stima della pericolosità sismica. E anche qui per me la distinzione è semplice e diretta. Conoscere le sorgenti sismogenetiche aiuta in modo anche sostanziale a valutare la pericolosità sismica da scuotimento (ground shaking hazard), che include anche la pericolosità dovuta a frane e liquefazioni, ma dice poco sui possibili effetti geologici ‘fragili’ di superficie di un forte terremoto. Viceversa, conoscere la distribuzione delle faglie attive dice poco o nulla sulla sismogenesi, ma ci consente di valutare pericolosità sismica da fagliazione superficiale (surface faulting hazard), ovvero gli effetti ‘fragili’ appena citati, con implicazioni evidenti sul corretto uso del territorio nelle aree che si trovano al di sopra di una grande faglia sismogenetica; anche perché dallo scuotimento ci si può sempre difendere, almeno in linea di principio, mentre ben poco si può fare di fronte alla possibilità che le fondamenta di un’infrastruttura critica vengono brutalmente dislocate da una scarpata di faglia, anche di un metro o più.
Si tratta quindi di due strumenti non alternativi ma del tutto complementari, perché ciascuno porta informazioni che l’altro non è strutturalmente in grado di fornire; ed è per promuovere questo principio che io e i miei colleghi più vicini ci siamo molto adoperati negli ultimi anni. Anche la Protezione Civile nazionale è ben consapevole di questo dualismo, tanto da aver finanziato già da alcuni anni un progetto che coinvolge INGV e ISPRA e che punta a rendere culturalmente, scientificamente e informaticamente interoperabili i due database DISS e ITHACA; questo avvantaggerà molto tutti coloro che si avvicinano a questi due strumenti, non sempre cogliendone le differenze.

DISS è nato nel 2000. Puoi ripercorrere brevemente le tappe della sua evoluzione?

Nel luglio 2000 abbiamo presentato il prototipo del DISS, che veniva distribuito su un CD-ROM insieme a un software GIS in uso gratuito; ma in effetti la sperimentazione era iniziata nel 1996, addirittura nell’ambito di una tesi di laurea, collegata ad un progetto europeo in cui l’INGV (allora ancora ING) collaborava con l’ISMES di Bergamo. Nel luglio 2001, esattamente un anno dopo, abbiamo presentato la versione 2.0 del DISS, che era accompagnata da un volumetto degli Annali di Geofisica, da un poster e da un CD-ROM.
L’accoglienza fu entusiastica, ma si trattava ancora di uno strumento molto rudimentale, che conteneva solo quelle che oggi chiamiamo “sorgenti individuali”, ovvero delle rappresentazioni semplificate – ma pienamente tridimensionali – delle sorgenti di numerosi forti terremoti del passato e anche di qualche possibile terremoto futuro. In quella fase pionieristica giocavano un ruolo centrale le “sorgenti macrosismiche”, di cui dirò nel seguito. Negli anni successivi però si capì che bisognava dare più spazio alla Geologia, che era l’unico modo per anticipare i terremoti del futuro e rendere il DISS uno strumento prognostico realmente utilizzabile per analisi di pericolosità sismica, ovvero “completo”.

Fu così che nel 2005 vennero introdotte le “sorgenti composite”, che affiancavano informazione geologica a quella sismologica condensata nelle “sorgenti individuali”. Lo scopo era quello di identificare tutti i principali sistemi di faglia estesi, senza poterli però segmentare, come si dice nel nostro gergo, nelle singole porzioni di questi sistemi che generanno un singolo forte terremoto. La prospettiva dichiarata – ma forse solo con la pretesa ­– era quella di costruire un insieme completo rispetto a tutte le sorgenti sismogenetiche che esistono sul territorio italiano, così come i sismologi storici si sforzano di rendere i loro cataloghi completi almeno per un congruo numero di secoli.
Le “sorgenti composite” sono definite con minor dettaglio di quanto non lo siano le individuali, ma si spingono coraggiosamente in zone dove non abbiamo ancora visto grandi terremoto ma è legittimo ritenere se ne potranno verificare nel futuro.

Ne 2009 sono state poi introdotte le “sorgenti dibattute”, ovvero delle faglie attive proposte in letteratura ma che non riteniamo ancora mature per una trasformazione in sorgenti vere e proprie, e le “zone di subduzione”; non solo quella ionico-tirrenica, ma anche quella dell’Arco Egeo – un’area del Mediterraneo in grado di generare forti terremoti e maremoti che possono interessare anche l’Italia – e quella, in larga misura disattivata, che si estende al di sotto dell’Appennino centrale e settentrionale.

In oltre 20 anni di storia il DISS è cresciuto molto (invito tutti a vedere la piccola ma eloquente animazione in cima a questa pagina di sintesi e a verificare l’evoluzione delle diverse versioni), anche attraverso la pubblicazione di sintesi regionali a cura degli autori del DISS e grazie all’avvio di collaborazioni con altri istituti di ricerca, italiani e stranieri. Abbiamo esteso il numero delle sorgenti composite, che sono triplicate, passando da 65 nel 2005 a 197 nel 2021; il numero dei riferimenti bibliografici, più che raddoppiato nello stesso intervallo di tempo, da 1.720 a 4.057, e il numero delle immagini associate alla descrizioni delle sorgenti, da 550 a 1.192; tutte le novità sono state attentamente registrate in un file di “Accompanying Notes” e il contenuto di ogni versione è stato “congelato” con l’assegnazione di un DOI (tutte le versioni sono scaricabili on-line).

Dal 2000 a oggi sono “solo” aumentate le conoscenze o sono intervenuti anche cambiamenti di punti di vista?

Questa è una domanda a cui mi fa molto piacere rispondere perché contiene l’essenza dello sforzo fatto in questi ultimi 25 anni. Premetto che il DISS non è un database nel senso stretto, ovvero uno strumento che si limita ad accumulare e rappresentare un certo set di conoscenze; al contrario, è uno strumento i cui contenuti sono sempre approvati e sottoscritti dai componenti del gruppo di lavoro, i quali in qualche modo “ci mettono la faccia”. Qualunque scelta, qualunque affermazione è riconducibile a uno o più autori, i quali hanno proposto e portato all’attenzione di tutto il gruppo di lavoro  ipotesi scientifiche basate su proprie convinzioni o sull’analisi della letteratura. Ciò detto, si, l’orizzonte è molto cambiato rispetto ai primordi. Per sintetizzare al massimo, il DISS è partito come uno strumento basato da un lato su pochi forti terremoti del XX secolo, studiati o reinterpretati a partire da dati sismologici, geofisici, geodetici e storici, e dall’altro su un gran numero di terremoti storici, analizzati con la tecnica Boxer, non a caso pubblicata nel 1999. Boxer consentiva di estrarre una pseudo-sorgente sismica da un quadro macrosismico, purché ragionevolmente denso e ben distribuito geograficamente intorno all’area epicentrale. Questo modo di procedere era l’applicazione pedissequa del principio che ho enunciato, e cioè del fatto che è necessario partire dai terremoti e poi marciare a ritroso per studiare le faglie che li hanno generati; ma era anche il modo migliore per non impelagarsi nelle difficoltà intrinseche nella ricerca delle faglie attive, una volta stabilito che forse il 50% delle sorgenti dei grandi terremoti sono cieche, e al massimo causano in superficie un quadro deformativo che è difficile ricondurre alla sorgente primaria.
Con l’uscita della versione 3.0, nel 2005, c’è stata una prima rivoluzione. Abbiamo deciso di uscire da una fase pionieristica in cui era inevitabile utilizzare in maniera preponderante il dato storico e si è cercato di aprire una nuova fase in cui invece diventasse dominante la tipologia di dato che ci era più congeniale, ovvero quello geologico-sismotettonico. Come già accennato, nacquero le “sorgenti composite” e uscirono di scena  le sorgenti basate esclusivamente su informazioni macrosismiche, anche se il dato storico non spariva del tutto ma continuava essere uno degli elementi principali nella costruzione delle sorgenti, particolarmente quelli individuali; tuttavia, a differenza di quello che avveniva in precedenza, tutte le sorgenti riflettevano in misura variabile un’informazione geologica, geofisica, e nei casi più favorevoli, sismometrica e geodetica.
Questo cambio di passo è stato reso obbligato dalla necessità – o comunque dal desiderio – di iniziare a mappare anche sorgenti sismogenetiche in mare, sfruttando la grande mole di dati geofisici disponibili per i bacini italiani. Difficilmente queste sorgenti, che includono anche l’area di subduzione ionico-tirrenica, possono essere caratterizzate con riferimento alla sismicità, sia storica che strumentale, e solo occasionalmente sono disponibili evidenze dirette di fagliazione sul fondo marino.
Tra i cambiamenti di filosofia, per così dire, c’è stata anche la decisione di migliorare l’accessibilità dei dati, in un processo che ha seguito e sfruttato la rapida evoluzione degli strumenti GIS, e negli ultimi 15 anni anche web-GIS. La versione 3.3.0 è interoperabile con diverse banche-dati pertinenti, quali il CPTI-DBMI, il CFTI, la banca-dati strumentale dell’INGV denominata ISIDe, oltre che, come già detto, con ITHACA. La base geografica può essere scelta in un ventaglio di proposte e possono essere aggiunti i confini amministrativi ISTAT e misurate distanze, come se ci si trovasse in un vero GIS da desktop. È quindi possibile realizzare immagini di grande ricchezza, caratterizzando il rapporto tra sorgenti sismogenetiche, sismicità del passato e sismicità strumentale. Va infine ricordata la possibilità di consultare il DISS attraverso Google Earth, con tutte le opportunità che a sua volta questa piattaforma consente.
La circolazione dei dati proposti da DISS è stata resa più facile dalla possibilità di scaricarli in vari formati di scambio e dal fatto che gli stessi dati oggi si interfacciano in modo diretto con OpenQuake, il software per il calcolo della pericolosità sismica di base che si sta rapidamente imponendo a scala globale. La sfida più recente riguarda la possibilità di rendere il pubblico degli utenti del DISS più partecipe dell’evoluzione di questa banca-dati, anche attraverso una presenza capillare sui social networks; questo sia per renderne l’uso più diffuso, sia per sollecitare possibili contributi esterni utili a migliorare la definizione delle sorgenti esistenti o a introdurne delle nuove.

Quali sono gli utilizzi attuali di DISS?

Noi monitoriamo costantemente gli accessi al DISS e riceviamo diverse sollecitazioni dagli utenti, ma è arduo capire chi c’è dietro ogni indirizzo IP; al massimo possiamo fare delle inferenze. Sappiamo dai record bibliometrici che il DISS viene consultato e attivamente utilizzato per scopi di ricerca, prevalentemente da colleghi italiani ma anche da studiosi del resto del mondo. Vediamo dati e immagini tratti dal DISS in numerose relazioni tecniche, realizzate dalle amministrazioni o da singoli professionisti, ad esempio nel contesto di attività di microzonazione a diversi livelli o di attività di rivalutazione della pericolosità sismica di siti di specifico interesse, come le reti di trasporto e le dighe.
C’è poi l’uso più “nobile”, che è particolarmente delicato perché impegna la banca-dati nella sua interezza: mi riferisco alla elaborazione di modelli di pericolosità a scala regionale o nazionale, come nel caso del recente modello MPS19. Il DISS entra in questi modelli direttamente, attraverso le “sorgenti composite” e relativi ratei di attività (ottenuti dagli slip rates), ma anche in altri modi meno diretti, come nella definizione della magnitudo massima attesa nelle diverse aree, nella delineazione di zone a sismicità omogenea, o nella definizione di macroaree in cui effettuare scelte operative diverse  – ad esempio nella scelta delle relazioni di attenuazione più adatte a ciascuna area – e infine nella definizione delle aree da considerare di near-field.

L’idea di DISS è stata estesa all’Europa?

Certamente. Un primissimo tentativo data addirittura al periodo 1998-2000, quando le esperienze in corso in ambito DISS vennero estese al resto dell’Europa nel quadro del progetto comunitario Faust, di cui conserviamo gelosamente in vita il sito originario.
Tra il 2009 e il 2013 il DISS è stato adottato come una sorta di template per la costruzione di EDSF13 (oggi aggiornato in EFSM20) dal progetto comunitario SHARE , che aveva come obiettivo primario la realizzazione di un nuovo modello di pericolosità a scala europea. Le “sorgenti composite” sono state scelte come elemento di base di una mappatura da estendere a tutto il continente europeo, o almeno della sua porzione in cui esistono faglie in grado di generare forti terremoti. In quegli stessi anni era attivo il progetto EMME, un omologo di SHARE che si proponeva di realizzare un modello di pericolosità per la Turchia e il Medio Oriente, e il modello EDSF venne così armonizzato con l’imponente raccolta di faglie sismogenetiche che caratterizza quei territori.
ll modello DISS è stato poi mutuato – in alcuni casi con il relativo software – da alcuni altri singoli paesi europei. Citerò qui solo il caso del GreDaSS (Greek Database of Seismogenic Sources), realizzato dalle università di Ferrara e di Salonicco.

Esistono realizzazioni simili in altre parti del mondo?

Esistono alcune decine di compilazioni di “faglie attive”, “faglie sismogenetiche”, “lineamenti” e tutte le categorie intermedie; molte sono censite dal progetto GEM-Global Active Faults, che non a caso nelle sue fasi iniziali prese ad esempio proprio il DISS-EDSF (si veda il report del progetto GEM-Faulted Earth). Ma a onor del vero – e mi si perdoni l’immodestia – quasi nessuna di queste compilazioni offre tutta la ricchezza di informazione immagazzinata dal DISS, con la sola eccezione della California: una ricchezza dovuta soprattutto al fatto che l’Italia possiede una storia sismica ricchissima, una comunità delle Scienze della Terra molto attiva, e molti dati di esplorazione geofisica, ed è sede di terremoti che vengono registrati e studiati con grande attenzione. Anche altri paesi godono di queste prerogative, ma per ragioni che non so spiegarmi i loro modelli della sismogenesi basati su faglie attive sono ancora molto essenziali: valga per tutti l’esempio del Gia­ppone, dove ancora si fatica a trattare in modo naturale persino la terza dimensione delle faglie, quella verticale: cruciale per la pericolosità sismica, ma decisamente ostica per il geologo tradizionale.

È possibile valutare la “completezza” di DISS?

Temo che la risposta sia negativa, o comunque non semplice. È un fatto che l’introduzione delle “sorgenti composite” nel 2005 servisse proprio a “rincorrere” la completezza, ma è arduo dire a che punto siamo oggi. Un esercizio utile può essere quello di confrontare gli earthquake rupture forecasts (ERFs) proposti da Visini et al. (2021) nel quadro della elaborazione della MPS19, e ragionare sulle differenze tra il modello “DISS based” (MF1) e gli altri modelli non basati su sorgenti sismogenetiche (spero che qualcuno elabori queste differenze e ci scriva sopra un articolo, che sarebbe utilissimo). Un giorno lontano potremmo valutare questa completezza attraverso dati GPS, come hanno fatto Carafa et al. (2020) per una porzione dell’Appennino centrale, in via sperimentale.

What next?

What next…. Dal punto di vista dei contenuti è relativamente facile ipotizzare che continuerà incessante la ricerca di nuovi dati e di nuove sorgenti, ma che la struttura della banca-dati resterà abbastanza stabile per qualche anno almeno. Mi è più difficile rispondere per ciò che riguarda gli utilizzi del DISS: le possibili applicazioni sono numerose, ma ho spesso la sensazione che siamo stati più veloci noi a crearlo, nonostante che ormai siano passati esattamente 25 anni dai primi esperimenti, che non il mondo dei possibili utenti a sfruttarlo.

Normalmente in un modello di pericolosità a scala nazionale o regionale entrano tre set di dati di ingresso, che idealmente possono essere usati per costruire modelli della sismogenesi in teoria indipendenti, ma in pratica variamente intrecciati tra loro, come ho raccontato finora. Li descriverò brevemente in ordine crescente di complessità:

  • modelli a sismicità diffusa (smoothed seismicity), che si basano esclusivamente sui terremoti già accaduti, talora con piccoli correttivi di natura sismotettonica, e che letteralmente “spalmano” la sismicità già vista su zone più ampie. La produttività sismica è quindi strettamente proporzionale a quello che arriva dal catalogo sismico utilizzato;
  • modelli di zonazione sismogenetica, nei quali il territorio è suddiviso in aree indipendenti all’interno di ciascuna delle quali si assume che la sismicità abbia caratteristiche costanti, indipendentemente dal punto esatto che si considera, inclusa la produttività sismica; quello che si ottiene è un patchwork di zone più o meno grandi all’interno delle quali la sismicità è omogenea;
  • modelli di sorgente sismogenetica, ovvero modelli quali il DISS, nei quali la delineazione delle sorgenti è guidata anche dalla conoscenza dei forti terremoti del passato, ma la produttività sismica è calcolata in modo indipendente sulla base delle stime dei ratei di dislocazione delle faglie (gli slip rates). Quello che si ottiene è un andamento delle sismicità che segue fedelmente le strutture sismogenetiche riconosciute.

Il modello MF1, l’unico ad essere stato derivato esclusivamente dalle sorgenti del DISS, offre evidentemente una migliore risoluzione spaziale, come fosse un quadro disegnato con un pennello più sottile; consentendo da un lato di determinare con maggior accuratezza quale sarà lo scuotimento atteso al di sopra delle sorgenti, ovvero nel cosiddetto near-field (al netto di altri effetti di sorgente come la direttività e di eventuali e onnipresenti effetti di sito, ovviamente), dall’altro di non ‘portare pericolosità’ in zone in cui l’evidenza geologica, corroborata da quella storica e strumentale, non mostra la presenza di simili sorgenti sismogenetiche. Il DISS offre questa informazione: se non dovunque, in molti luoghi dell’Italia.

L’immagine qui di seguito (Fig. 3 di Meletti et al., 2021) mostra che da ognuno di questi modelli è possibile calcolare dei ratei di sismicità ai nodi di una griglia regolare e con un passo adeguato a non creare singolarità indesiderate (in genere qualche km).

Schermata 2022-05-04 alle 22.59.20

Le due immagini che seguono mostrano la differenza tra il modello di pericolosità sismica elaborato per la Turchia nel 1996 (sopra), basato essenzialmente su un modello di zonazione sismogenetica tradizionale, e il modello pubblicato nel 2018 (sotto), che fa tesoro delle conoscenze sulle sorgenti sismogenetiche raccolte grazie ai già citati progetti SHARE e EMME. Si percepisce distintamente la differenza di potere risolvente dei due modelli, particolarmente evidente nel settore occidentale del paese; e si percepisce anche l’aumento della ‘dinamica’ del modello del 2018, che mostra valori di accelerazioni alti a cavallo delle sorgenti sismogenetiche e valori bassi i quasi nulli lontano da esse.

Schermata 2022-05-04 alle 22.57.49

Da: https://www.researchgate.net/publication/270704802_Turkey%27s_grand_challenge_Disaster-proof_building_inventory_within_20_years/figures?lo=1

Schermata 2022-05-04 alle 22.57.57

Da: https://www.researchgate.net/profile/Abide-Asikoglu/publication/334094188/figure/fig1/AS:774777023262721@1561732645307/Seismic-hazard-map-of-Turkey-4.png

Fino ad oggi in Italia non siamo riusciti a cogliere del tutto questa opportunità, che potrebbe contribuire a rendere più accurato il modello di pericolosità sismica. I motivi veri non mi sono chiari, anche se qualcuno ritiene che DISS non sia sufficientemente maturo a questo scopo, senza peraltro spiegarlo in modo opportuno.

_______________

Chiudo ringraziandoti per l’opportunità che mi hai dato di riflettere e scrivere su questi 25 anni di storia, che peraltro ci hanno visto sempre ragionare in buona sintonia (anche se inizialmente eravamo su due fronti opposti, quali sono stati ING e GNDT fino al 2001, anno di nascita dell’INGV). Ringrazio anche tutti coloro che avranno avuto la pazienza di arrivare a leggere questi pensieri fino in fondo.

L’ossessione della mappa di pericolosità sismica (di Massimiliano Stucchi

Questo post è il seguito di “Ferma restando l’autonomia scientifica”
https://terremotiegrandirischi.com/2021/11/09/ferma-restando-lautonomia-scientifica-di-massimiliano-stucchi
in cui si è analizzato il tentativo di INGV di “sganciarsi” dal controllo che DPC eserciterebbe sull’ente tramite la gestione di una parte dei suoi finanziamenti, limitandone così l’autonomia scientifica, senza che sia emersa alcuna evidenza di come questa limitazione si sia fin qui manifestata.
In questo post si dimostra che, se un lettore attento cerca nei documenti citati i motivi che mettono a repentaglio l’autonomia scientifica delle attività svolte da INGV per DPC trova ben poco. Trova solo critiche non nuove, inconsistenti e mal documentate, alla mappa di pericolosità sismica prodotta dall’INGV nel 2004: una vera e propria ossessione del suo attuale Presidente.

Un argomento che potrebbe prestarsi a una discussione seria sull’autonomia scientifica riguarda la Commissione nazionale per la previsione e la prevenzione dei grandi rischi, comunemente chiamata “Commissione Grandi Rischi” (CGR); questa è organo di consulenza tecnico-scientifica del Dipartimento della protezione civile, come recita ad esempio il Decreto del Presidente del Consiglio dei Ministri del 16.09.2020, ultimo di una lunga serie di aggiustamenti.
La Commissione è costituita, in ciascuno dei settori in cui si articola, da ricercatori esperti nei settori di competenza e “fornisce pareri tecnico-scientifici su quesiti e argomenti posti dal Capo del Dipartimento della protezione civile”.

Della Commissione fanno parte anche i Presidenti (o loro delegati) dei Centri di competenza del DPC nei vari settori, centri che intrattengono rapporti di convenzione con il DPC stesso; pertanto può sorgere il sospetto che questi rapporti possano in qualche modo limitare l’autonomia di giudizio dei componenti della Commissione (il caso più noto è rappresentato dalle accuse che seguirono la riunione della CGR del 30 marzo 2009 e dal processo che ne scaturì, processo dalla cui celebrazione nacque questo blog).

Tuttavia non risulta che questo aspetto sia mai stato posto in modo esplicito. Come detto nel post precedente, le accuse pesanti a DPC di voler limitare l’autonomia scientifica di INGV o addirittura di voler controllarne le attività
https://www.huffingtonpost.it/entry/doglioni-la-protezione-civile-vuole-gestire-i-finanziamenti-dellingv-per-poterne-controllare-le-attivita_it_615c09d0e4b075408bdb42c9
non sono corredate da evidenze, tanto meno con particolare riferimento al tema del monitoraggio sismico vulcanico, cui è dedicata la parte maggiore dei finanziamenti in questione.

Lincei imprecisi. A leggere bene l’intervista rilasciata dai vertici dei Lincei
https://www.huffingtonpost.it/entry/la-liberta-dellingv-e-durata-quanto-la-vita-di-una-farfalla-di-r-antonelli-g-parisi_it_61557414e4b05025422edf27
in realtà si trova un accenno a un caso di presunta volontà coercitiva del DPC. Antonelli e Parisi affermano infatti che

...la Protezione Civile impone all’INGV molti dei criteri con cui svolgere queste attività. Tra questi, per esempio, anche quelli della mappa di pericolosità sismica nazionale, che detta le norme con cui costruire in modo antisismico. I criteri scientifici per fare questa mappa devono essere decisi da un ente scientifico, non da una struttura non scientifica…“.

Spiace leggere tante affermazioni imprecise da parte di persone tanto importanti in così poco spazio. Come coordinatore del Gruppo di Lavoro che ha realizzato nel 2004 la mappa di pericolosità sismica mi sento in dovere di fare qualche precisazione
(per una analisi più estesa si veda https://terremotiegrandirischi.com/2016/09/26/che-cose-la-mappa-di-pericolosita-sismica-prima-parte-di-massimiliano-stucchi/).

I criteri generali con cui sono state compilate le mappe di pericolosità sismica non sono “stati imposti da DPC” a INGV ma:

a) nel caso di MPS04 erano fissati da una norma dello stato (Ordinanza del Presidente del Consiglio dei Ministri, OPCM, 3274/2003) cui aveva contribuito primariamente una commissione di ricercatori istituita – su iniziativa dell’allora Presidente INGV – dal Presidente del Consiglio dei Ministri. Tali criteri generali erano stabiliti per indirizzare la compilazione di qualsivoglia mappa di pericolosità finalizzata alla normativa sismica, a livello nazionale o regionale, al fine di garantirne la qualità e la omogeneità. MPS04 era stata una di queste;
b) nel caso della più recente MPS19 (2019), già pubblicata ma il cui utilizzo è ancora in stand-by presso la CGR, i criteri sono stati fissati dopo un’ampia consultazione della comunità ingegneristica, rifacendosi ai criteri precedenti e con riferimento all’aggiornamento della normativa tecnica per le costruzioni.

In queste operazioni DPC ha funzionato da tramite fra INGV e Governo, agevolando di fatto il rapporto con il Ministero delle Infrastrutture e Trasporti che, in quanto titolare delle Norme Tecniche, dovrebbe in realtà essere il Committente delle mappe di pericolosità sismica, ma la cui velocità di esecuzione è purtroppo molto bassa.

Viceversa, i criteri scientifici sono stati fissati dai due gruppi di ricerca che nei due casi si sono fatti carico di realizzare le mappe. Nel caso di MPS04, tra l’altro, DPC non ha nemmeno fornito un contributo finanziario; INGV ha coordinato l’esecuzione dei lavori con fondi propri, mentre DPC ha istituito un board di review internazionale che ha assistito criticamente la compilazione, come avviene nei maggiori progetti scientifici. Nel caso di MPS19, DPC ha co-finanziato i lavori mediante convenzioni con INGV, regolarmente sottoscritte dal suo Presidente.
Infine, “last but not least”, la mappa non “detta” le norme che, redatte dal Consiglio Superiore dei Lavori Pubblici, sono rappresentate da apposito “corpus” cui le valutazioni di pericolosità contribuiscono per la propria parte.

Insomma, spiace osservare che le affermazioni di Antonelli e Parisi sono gravemente imprecise: fatto inaccettabile per degli scienziati da cui di solito ci si aspetta che si documentino prima di fare affermazioni importanti, senza limitarsi a utilizzare fonti di seconda mano.

Altri equivoci, al Senato. Che il tema della compilazione della mappa di pericolosità sismica sia di fatto l’unico argomento messo in campo per provare una eventuale “limitazione” dell’autonomia scientifica esercitata da DPC nei confronti di INGV è dimostrato anche da una recente audizione del Presidente dell’INGV al Senato, https://webtv.senato.it/Leg18/4621?video_evento=238625, nella fase di conversione in legge del Decreto dello scorso settembre (per la successione cronologica degli atti legislativi qui discussi si veda il post precedente). In questa audizione il Presidente ha ripreso in buona sostanzale argomentazioni dell’articolo dei Lincei sostenendo, erroneamente come già spiegato più sopra, che i criteri di compilazione delle mappe di pericolosità siano fissati da DPC. Poi, come ulteriore prova della presunta limitazione della azione scientifica, ha citato la seguente tabella, che fa parte dell’All.1 alla OPCM 3274/2003:

che a suo dire vincolerebbe, nella colonna di sinistra, i risultati della compilazione della mappa di pericolosità sismica, parlando addirittura di “accelerazione imposte”.
È stato spiegato in tutte le sedi possibili che la colonna di sinistra non aveva il compito di determinare le azioni sismiche di progetto ma di stabilire, per la prima volta nella storia italiana, dei criteri scientifici per l’assegnazione dei Comuni italiani a una delle quattro zone sismiche (in gergo riclassificazione sismica). A ciascuna zona la stessa OPCM 3274/2003 assegna uno spettro di risposta elastico, di cui in tabella (parte destra) vengono rappresentati i valori di ancoraggio.

Da dove provenivano i valori di soglia contenuti nella colonna di sinistra? Da scelte eseguite dalla citata commissione sulla base degli elaborati di pericolosità sismica resi disponibili -prima del 2003 – per l’Italia. Va comunque osservato che i valori determinati in seguito da MPS04 (2004), dal progetto europeo SHARE (2013) e di recente da MPS19 (2019) per lo stesso parametro di pericolosità sismica (accelerazione orizzontale su suolo rigido con probabilità di superamento del 10% in 50 anni) sono distribuiti più o meno intorno alla stessa scala di valori.
Le parole del Presidente (2:46:00 e segg.) potrebbero quasi adombrare che i valori della colonna di sinistra abbiano in qualche modo influenzato la compilazione di MPS04, quasi che quest’ultima avesse dovuto adeguarsi a essi, senza considerare – tra l’altro – gli esiti molto positivi del processo di revisione scientifica indipendente (peer-review) della mappa stessa.

Il Presidente ha poi mostrato il solito confronto con i valori di PGA registrati in occasione dei terremoti del 2016, avvenuti quindi dopo la compilazione di MPS04, senza segnalare che, rispetto al 2004:

•     la normativa per le costruzioni in zona sismica (NTC08 e NTC18) è cambiata, ovvero gli spettri di risposta elastici sono determinati in altro modo rispetto alla OPCM 3274/2003;

•     le zone sismiche di fatto non hanno più influenza sulle modalità di costruzione.

È vero che i terremoti del 2016 hanno fatto registrare valori elevati di scuotimento, superiori a quelli proposti da MPS04 per una probabilità di superamento del 10% in 50 anni: ma è altrettanto vero che il modello MPS04, così come il recente MPS19, rendono disponibili valori più elevati per probabilità di superamento inferiori. Senza contare che i valori forniti dai due modelli di pericolosità si riferiscono a condizioni standard del sito, ovvero non considerano le eventuali amplificazioni locali che vengono valutate a parte dal progettista.

Colpisce infine che non si voglia riflettere – o chiedere a chi ha elaborato le Norme Tecniche – come mai la normativa del 2018 non abbia modificato le caratteristiche dell’input sismico rispetto a quelle del 2008, precedenti i terremoti del 2016. Una analisi del problema dal punto di vista ingegneristico è contenuta qui
https://terremotiegrandirischi.com/2021/04/08/quando-le-azioni-sismiche-di-progetto-vengono-superate-colloquio-con-iunio-iervolino/
da cui emerge che la questione della sicurezza degli edifici – per chi ha voglia di affrontarla seriamente – non risiede nelle modalità di calcolo della pericolosità sismica ma dall’approccio integrale delle Norme Tecniche.

Qualche domanda. Il Presidente dell’INGV dovrebbe essere consapevole del fatto che MPS04 è un elaborato che tra l’altro ha da tempo esaurito il compito per il quale è stato prodotto (si veda ad esempio https://terremotiegrandirischi.com/2016/10/05/la-mappa-di-pericolosita-sismica-parte-seconda-usi-abusi-fraintendimenti-di-massimiliano-stucchi/).
Allo stesso modo non ignora certo che è stato il successo di MPS04 a consegnare a INGV un ruolo-guida in un settore che fino al 2004 era stato appannaggio di altri enti di ricerca; e che questo ruolo poi ha portato a INGV – oltre che un ritorno di immagine- ulteriori finanziamenti.

Ci si può chiedere allora perché – da quando è Presidente e solo sui media – ha prodotto critiche unilaterali che non sono mai sfociate in interventi di tipo e formato scientifico, e tanto meno in pubblicazioni scientifiche?
Perché, se ritiene di avere visioni e proposte scientifiche diverse, non ha mai promosso confronti scientifici sul tema, in particolare all’interno dell’INGV come peraltro è stato più volte sollecitato a fare, e quando sono stati organizzati da altri non vi ha partecipato?
Perché non ha ricercato il dialogo aperto con la comunità ingegneristica che predispone le norme tecniche e, quindi, determina le modalità più opportune per esprimere la valutazione della pericolosità sismica a supporto delle norme stesse?
Perché, in presenza di articoli di stampa o trasmissioni televisive a dir poco fuorvianti non ha preso l’iniziativa di difendere i prodotti dell’ente che presiede, e nemmeno ha permesso che i principali compilatori di MPS04 li difendessero sul blog del Dipartimento Terremoti?

E per concludere: il fatto che DPC, dipartimento della Presidenza del Consiglio, abbia richiesto a INGV, che ha accettato, la realizzazione di un prodotto scientifico secondo formati e modalità idonei al suo utilizzo non significa certo che INGV non sia libero di produrne infiniti altri, secondo i criteri più diversificati.
Perché dunque queste critiche contro le MPS (04 e 19) non hanno finora trovato riscontro nella produzione – all’interno dell’INGV – di mappe o modelli di pericolosità alternativi? I costi non sarebbero elevatissimi, i tempi neppure; non è necessario un CERN per realizzarle.

Norme tecniche per le costruzioni, modelli di pericolosità sismica e sicurezza degli edifici (colloquio con Antonio Occhiuzzi)

Anche se l’interesse maggiore di questi tempi è ovviamente per l’emergenza Covid, abbiamo ritenuto utile proporre una interessante analisi sul problema della sicurezza sismica degli edifici in relazione alle norme tecniche e ai modelli di pericolosità sismica.

Antonio Occhiuzzi, napoletano e tifoso del Napoli, è professore di Tecnica delle Costruzioni presso l’Università Parthenope. E’ laureato in ingegneria a Napoli e al MIT di Boston, ha un dottorato di ricerca in ingegneria delle strutture, materia cui si dedica da sempre.
Dal 2014 dirige l’Istituto per le Tecnologie della Costruzione (ITC), ossia la struttura del CNR che si occupa di costruzioni, con sedi a Milano, Padova, L’Aquila, Bari e Napoli.

Caro Antonio, tempo fa avevi commentato un mio post di risposta a un articolo dell’Espresso in cui veniva riproposta, come avviene periodicamente, la questione del superamento dei valori di progetto in occasione dei terremoti recenti e, di conseguenza, la presunta fallacia dei modelli di pericolosità e delle normative basate su di essi, quasi che entrambi fossero responsabili dei crolli e delle vittime. https://terremotiegrandirischi.com/2019/08/27/la-colpa-e-dei-modelli-di-pericolosita-sismica-di-massimiliano-stucchi/

Poichè in questa problematica si intrecciano aspetti sismologici e ingegneristici, ti ho invitato a approfondire la tematica. Continua a leggere

Parlare di terremoti e di pericolosità sismica, oggi? (Massimiliano Stucchi)

Meglio di no, certo. Ci sono ben altri problemi, oggi; anche se, inevitabilmente, qualcuno azzarda paragoni con l’epidemia, a volte azzeccati, a volte maldestri.
Anche la puntata di “Presa Diretta”, che doveva continuare l’opera di critica nei confronti del modello di pericolosità sismica adottato dalla Normativa Tecnica per le Costruzioni, già rinfocolata da L’Espresso lo scorso agosto e ripresa addirittura da una indagine della Corte dei Conti (!), è stata rinviata.

Rimandare alla fase 2? La fase 3? Ma quando comincia la fase 2, e soprattutto come sarà questa fase 2? Molti si ingegnano a cercare il “picco” attraverso modelli più o meno complessi, che cercano di utilizzare dati abbastanza farlocchi. Altri protestano perché non viene spiegata in dettaglio la fase 2; altri ancora se la prendono con i “trasgressori” del lockdown, che impediscono la discesa della curva. Si aprono inchieste, giuste ma forse non prioritarie, quando si pensa ai degenti del Triulzio o di altre RSA ancora vivi, da proteggere (vogliamo parlare di che cosa si fa per loro, oggi?).

E da parte dei media continua, imperterrita, la ricerca del parere degli esperti, più spesso per evidenziare eventuali disaccordi che non per fornire al pubblico elementi di informazione e di conoscenza. Come nel caso di terremoti, appunto.

Nell’autunno scorso, con Carlo Meletti, avevamo scritto un articolo che voleva fare il punto sul modello di pericolosità sismica MPS04 e cercava di smontare bufale e fake news in proposito.
Anzi, cercava di fare di più: di ragionare sul problema.

Questo articolo sta per essere pubblicato sul prossimo numero di “Progettazione Sismica”, che ringrazio per aver reso disponibile una preview al seguente link

https://drive.google.com/file/d/1bFNXPSqZL2K6I6njQJlFy9tu_a7EyJDe/view

Ho pensato di renderlo disponibile comunque.

In aggiunta, succede che mercoledì 15 aprile, alle ore 12, parlerò proprio di questi temi nel corso di un Webinar organizzato dalla Università di Camerino, in particolare da Emanuele Tondi, che è anche direttore della locale sede INGV.

Doveva essere un seminario per studenti, in loco: le circostanze l’hanno trasformato in un webinar aperto a tutti, che potrà essere seguito da questo link

https://unicam.webex.com/meet/emanuele.tondi

Niente di speciale, cose forse già dette. Per studenti che vogliono continuare a studiare, capire e prepararsi alle prossime fasi.

La colpa è dei modelli di pericolosità sismica? (Massimiliano Stucchi)

Premessa. In questi giorni si discutono problemi ben più gravi e urgenti. Tuttavia l’apparizione di un articolo, su l’Espresso, che approfitta della ricorrenza del terremoto di Amatrice del 2016 per gettare discredito sul modello di pericolosità sismica corrente e sulle norme dello Stato, utilizzando fake news e argomenti inconsistenti mi ha mandato in bestia.

Ce lo si poteva aspettare. Cosa meglio di una ricorrenza di un terremoto (Amatrice, 2016) e delle sue vittime per tornare a accusare terremoti e sismologia? Dopo L’Aquila c’era stato addirittura un processo (anzi, più di uno; uno – civile – ancora in corso, al quale sono stato convocato per testimoniare in settembre, senza spiegazione alcuna, dalla parte che accusa lo Stato e chiede risarcimenti). Continua a leggere

Do seismic hazard models kill? (Massimiliano Stucchi)

Introduction. The appearance of an article, on the weekly magazine L’Espresso (http://espresso.repubblica.it/plus/articoli/2019/08/26/news/terremoto-calcoli-sbagliati-1.338128?ref=HEF_RULLO&preview=true), which took advantage of the 2016 Amatrice earthquake anniversary to discredit the Italian seismic hazard model and the national building code based on it, using fake news and inconsistent arguments, made me angry.
What follows is a comment written for the benefit of the international readers.
The original version in Italian which can be found here (https://terremotiegrandirischi.com/2019/08/27/la-colpa-e-dei-modelli-di-pericolosita-sismica-di-massimiliano-stucchi/), which can easily be translated by means of the improved https://translate.google.com/.

Continua a leggere

Verso il nuovo modello di pericolosità sismica per l’Italia (colloquio con Carlo Meletti)

English version at

https://terremotiegrandirischi.com/2018/07/03/towards-the-new-seismic-hazard-model-of-italy-interview-with-carlo-meletti/

Nel 2004 un piccolo gruppo di ricerca, coordinato da INGV, rilasciò la Mappa di Pericolosità Sismica del territorio italiano (MPS04), compilata secondo quanto prescritto dalla Ordinanza n. 3274 del Presidente del Consigli dei Ministri (PCM) del 2003. La mappa doveva servire come riferimento per le Regioni, cui spetta il compito di aggiornare la classificazione sismica dei rispettivi territori. La mappa fui poi resa “ufficiale” dalla Ordinanza n. 3519 del Presidente del Consiglio dei Ministri (28 aprile 2006) e dalla conseguente pubblicazione nella Gazzetta Ufficiale (n. 108 del 11 maggio 2006).
Nel seguito, utilizzando lo stesso impianto concettuale, alla mappa furono aggiunti altri elaborati che andarono a costituire il primo modello di pericolosità sismica per l’Italia. In particolare per la prima volta furono rilasciate stime per diversi periodi di ritorno e per svariate accelerazioni spettrali. Questo modello divenne poi la base per la normativa sismica contenuta nelle Norme Tecniche 2008 (NTC08), divenute operative nel 2008 ed è stato adottato anche dalle Norme Tecniche 2018.
Caratteristiche e vicende legate al successo di MPS04 sono descritte, tra l’altro, in due post di questo blog: 

https://terremotiegrandirischi.com/2016/09/26/che-cose-la-mappa-di-pericolosita-sismica-prima-parte-di-massimiliano-stucchi/

https://terremotiegrandirischi.com/2016/10/05/la-mappa-di-pericolosita-sismica-parte-seconda-usi-abusi-fraintendimenti-di-massimiliano-stucchi/

Come avviene in molti paesi sismici, da qualche anno un gruppo di ricerca sta compilando un nuovo modello di pericolosità, che utilizzi dati e tecniche aggiornate.
Massimiliano Stucchi ne discute con Carlo Meletti il quale, dopo aver contribuito in modo importante a MPS04, coordina la nuova iniziativa attraverso il Centro di Pericolosità Sismica dell’INGV.

MPS04, pur compilata abbastanza “di fretta” per soddisfare le esigenze dello Stato, ha avuto un notevole successo, sia in campo tecnico-amministrativo sia – dopo qualche anno – a livello di pubblico. Che cosa spinge alla compilazione di un nuovo modello?

C’è la consapevolezza che dopo oltre 10 anni siamo in grado di descrivere meglio la pericolosità sismica in Italia. Un modello di pericolosità è la sintesi di conoscenze, dati e approcci disponibili al momento della sua compilazione. Nel frattempo abbiamo accumulato tantissimi dati nuovi o aggiornati (non solo un importante revisione del catalogo storico dei terremoti, ma anche del database delle faglie e sorgenti sismogenetiche, nonché tutte le registrazioni accelerometriche dei terremoti forti italiani degli ultimi 10 anni).
Abbiamo pertanto ritenuto di dover verificare quanto cambia la definizione della pericolosità. E’ una prassi normale nei paesi più evoluti (ogni 6 anni negli Stati Uniti, ogni 5 in Canada, ogni 10 in Nuova Zelanda). Noi siamo partiti da un’esigenza di tipo scientifico, ma anche il Dipartimento della Protezione Civile ha sostenuto questa iniziativa per verificare il possibile impatto sulla normativa sismica (classificazione dei comuni e norme per le costruzioni).

Ci puoi riassumere brevemente le fasi di questa nuova iniziativa e anticipare, se possibile, la data di rilascio nel nuovo modello? Continua a leggere

La mappa di pericolosità sismica (parte seconda); usi, abusi, fraintendimenti (di Massimiliano Stucchi)

Nella prima parte abbiamo analizzato la mappa MPS04 dal punto di vista scientifico: che cosa descrive, che cosa non descrive, come è stata compilata, ecc.
Le reazioni di chi ha commentato su Twitter sono interessanti: la maggior parte ha confermato però l’aspetto “iconico” che la mappa riveste oggi. Ci torneremo.
In questa seconda parte parliamo delle sue applicazioni: la materia non è semplice e neppure troppo semplificabile; ci ho provato e mi scuso se non ci sono riuscito del tutto.

6) A chi spetta il compito di aggiornare l’elenco dei comuni inseriti in zona sismica?
Fino al 1999 spettava allo Stato il potere/compito di dichiarare “sismico” un dato Comune, associandolo a una zona sismica, o categoria: prima, seconda, e terza solo dal 1981. La zona sismica determinava il livello di severità delle azioni sismiche da considerare in sede di progetto: tre livelli in tutto, quindi. Segnaliamo comunque una caratteristica tutta italiana, e cioè il fatto che alcuni Comuni, dopo essere stati inseriti in zona sismica a seguito di alcuni terremoti, hanno chiesto e ottenuto di esserne esclusi dopo pochi anni “in quanto non erano più venuti terremoti”. Continua a leggere

Che cos’è la mappa di pericolosità sismica? Prima parte (di Massimiliano Stucchi)

Premessa
Fino al 2009, la mappa di pericolosità (MPS04) se la sono filata in pochi.

mps04

Era stata compilata fra il 2003 e il 2004, in meno di un anno – ovvero in un tempo brevissimo per questo tipo di elaborati – e senza finanziamenti ad hoc da un gruppetto di ricercatori coordinati da INGV, su richiesta della Commissione Grandi Rischi (CGR) per adempiere a quanto previsto dalla Ordinanza Presidenza del Consiglio dei Ministri (PCM) 3274/2003. Tuttavia era stata: Continua a leggere

Quando comincia l’emergenza sismica? (Massimiliano Stucchi)

Uno dei tanti messaggi devianti che l’esito e la sentenza del processo “Grandi Rischi“ ha diffuso a piene mani è che la riunione incriminata della Commissione, tenutasi il 31 marzo 2009, fosse stata convocata in una fase di “emergenza sismica”, legata in qualche modo al perdurare dello sciame da alcune settimane.
Naturalmente questa immagine si è formata concretamente solo dopo il terremoto del 6 aprile, quando per molti – con il senno di poi – è stato facile fare due più due: Continua a leggere